Skip to main content
Erschienen in: Neural Computing and Applications 6/2017

19.07.2016 | Engineering Applications of Neural Networks

Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method

verfasst von: David Lehký, Martina Šomodíková

Erschienen in: Neural Computing and Applications | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An important step when designing and assessing the reliability of existing structures and/or structural elements is to calculate the reliability level described by failure probability or reliability index. Since calculating the structural response of complex systems such as bridges is usually a time-consuming task, the utilization of approximation methods with a view to reducing the computational effort to an acceptable level is an appropriate solution. The paper introduces a small-sample artificial neural network-based response surface method. An artificial neural network is used as an approximation (a so-called response surface) of the original limit state function. In order to be as effective as possible with respect to computational effort, a stratified Latin hypercube sampling simulation method is utilized to properly select training set elements. Subsequently, the artificial neural network-based response surface is utilized to calculate failure probability. To increase the accuracy of the determined failure probability, the response surface can be updated close to the failure region. This is performed by finding a new anchor point, which lies close to the design point of the limit state function. The new anchor point is then used to prepare the updated training set. The efficiency of the proposed method is tested for different training set sizes using a nonlinear limit state function taken from the literature, and the reliability assessment of three concrete bridges, one with explicit and two with implicit limit state functions in the form of finite element method models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bucher CG (1988) Adaptive sampling—an iterative fast Monte Carlo procedure. Struct Saf 5(2):119–126CrossRef Bucher CG (1988) Adaptive sampling—an iterative fast Monte Carlo procedure. Struct Saf 5(2):119–126CrossRef
2.
Zurück zum Zitat Bjerager P (1988) Probability integration by directional simulation. J Eng Mech ASCE 114(8):285–302CrossRef Bjerager P (1988) Probability integration by directional simulation. J Eng Mech ASCE 114(8):285–302CrossRef
3.
Zurück zum Zitat Ayyub B, Chia C (1992) Generalised conditional expectation for structural reliability assessment. Struct Saf 11(2):131–146CrossRef Ayyub B, Chia C (1992) Generalised conditional expectation for structural reliability assessment. Struct Saf 11(2):131–146CrossRef
4.
Zurück zum Zitat McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245MathSciNetMATH McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245MathSciNetMATH
5.
Zurück zum Zitat Melchers EM (1999) Structural reliability analysis and prediction. Wiley, Chichester Melchers EM (1999) Structural reliability analysis and prediction. Wiley, Chichester
6.
Zurück zum Zitat Myers RH (1971) Response surface methodology. Allyn and Bacon, New York Myers RH (1971) Response surface methodology. Allyn and Bacon, New York
7.
Zurück zum Zitat Bucher CG (2009) Computational analysis of randomness in structural mechanics. CRC Press/Balkema, LeidenCrossRef Bucher CG (2009) Computational analysis of randomness in structural mechanics. CRC Press/Balkema, LeidenCrossRef
8.
Zurück zum Zitat Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, BerlinCrossRefMATH Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, BerlinCrossRefMATH
9.
Zurück zum Zitat Hurtado JE (2004) An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf 26(3):271–293CrossRef Hurtado JE (2004) An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf 26(3):271–293CrossRef
10.
Zurück zum Zitat Kaymaz I (2005) Application of Kriging method to structural reliability problems. Struct Saf 27(2):133–151CrossRef Kaymaz I (2005) Application of Kriging method to structural reliability problems. Struct Saf 27(2):133–151CrossRef
11.
Zurück zum Zitat Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33(2):145–154CrossRef Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33(2):145–154CrossRef
12.
Zurück zum Zitat Echard B, Gayton N, Lemaire M, Relun N (2013) A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab Eng Syst Safe 111:232–240CrossRef Echard B, Gayton N, Lemaire M, Relun N (2013) A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab Eng Syst Safe 111:232–240CrossRef
13.
Zurück zum Zitat Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66CrossRef Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66CrossRef
14.
Zurück zum Zitat Rajashekhar MR, Ellingwood BR (1993) A new look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220CrossRef Rajashekhar MR, Ellingwood BR (1993) A new look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220CrossRef
15.
Zurück zum Zitat Koehler JR, Owen AB (1996) Computer experiments. In: Ghosh S, Rao CR (eds) Handbook of statistics, vol 13. Elsevier, New York, pp 261–308 Koehler JR, Owen AB (1996) Computer experiments. In: Ghosh S, Rao CR (eds) Handbook of statistics, vol 13. Elsevier, New York, pp 261–308
16.
Zurück zum Zitat Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Wiley & B.G, Teubner, StuttgartMATH Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Wiley & B.G, Teubner, StuttgartMATH
17.
Zurück zum Zitat Kůrková V (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Netw 5(3):501–506CrossRef Kůrková V (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Netw 5(3):501–506CrossRef
18.
Zurück zum Zitat Novák D, Lehký D (2006) ANN inverse analysis based on stochastic small-sample training set simulation. Eng Appl Artif Intel 19(7):731–740CrossRef Novák D, Lehký D (2006) ANN inverse analysis based on stochastic small-sample training set simulation. Eng Appl Artif Intel 19(7):731–740CrossRef
19.
Zurück zum Zitat Lehký D, Novák D (2012) Solving inverse structural reliability problem using artificial neural networks and small-sample simulation. Adv Struct Eng 15(11):1911–1920CrossRef Lehký D, Novák D (2012) Solving inverse structural reliability problem using artificial neural networks and small-sample simulation. Adv Struct Eng 15(11):1911–1920CrossRef
20.
Zurück zum Zitat Vořechovský M (2015) Hierarchical refinement of latin hypercube samples. Comput Aided Civ Inf 30:394–411CrossRef Vořechovský M (2015) Hierarchical refinement of latin hypercube samples. Comput Aided Civ Inf 30:394–411CrossRef
21.
Zurück zum Zitat Novák D, Vořechovský M, Rusina R (2012) FReET v.1.6—program documentation: user’s and theory guides. Červenka Consulting, Brno. http://www.freet.cz Novák D, Vořechovský M, Rusina R (2012) FReET v.1.6—program documentation: user’s and theory guides. Červenka Consulting, Brno. http://​www.​freet.​cz
22.
Zurück zum Zitat Novák D, Vořechovský M, Teplý B (2013) FReET: software for the statistical and reliability analysis of engineering problems and FReET-D: degradation module. Adv Eng Softw 72:179–192CrossRef Novák D, Vořechovský M, Teplý B (2013) FReET: software for the statistical and reliability analysis of engineering problems and FReET-D: degradation module. Adv Eng Softw 72:179–192CrossRef
23.
Zurück zum Zitat Lehký D (2015) DLNNET—program documentation: theory and user’s manual. Brno, Czech Republic Lehký D (2015) DLNNET—program documentation: theory and user’s manual. Brno, Czech Republic
24.
Zurück zum Zitat Vořechovský M, Novák D (2009) Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach. Probab Eng Mech 24(3):452–462CrossRef Vořechovský M, Novák D (2009) Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach. Probab Eng Mech 24(3):452–462CrossRef
25.
Zurück zum Zitat Červenka V, Jendele L, Červenka J (2007) ATENA Program Documentation—part 1: theory. Cervenka Consulting, Prague Červenka V, Jendele L, Červenka J (2007) ATENA Program Documentation—part 1: theory. Cervenka Consulting, Prague
26.
Zurück zum Zitat Lehký D, Šomodíková M (2014) Small-sample artificial neural network based response surface method for reliability analysis of concrete bridges. In: Furuta H, Frangopol DM, Akiyama M (eds) Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014)—life-cycle of structural systems: design, assessment, maintenance and management, Tokyo, Japan. Taylor & Francis Group, London, pp 1903–1909 Lehký D, Šomodíková M (2014) Small-sample artificial neural network based response surface method for reliability analysis of concrete bridges. In: Furuta H, Frangopol DM, Akiyama M (eds) Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014)—life-cycle of structural systems: design, assessment, maintenance and management, Tokyo, Japan. Taylor & Francis Group, London, pp 1903–1909
27.
Zurück zum Zitat Šomodíková M, Lehký D (2015) Application of soft computing techniques for reliability calculation of time demanding problems. In: Podofillini L et al (eds) Safety and reliability of complex engineered systems: Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, Zürich, Switzerland, 7–10 September 2015, Taylor & Francis Group, London, pp 4151–4159 Šomodíková M, Lehký D (2015) Application of soft computing techniques for reliability calculation of time demanding problems. In: Podofillini L et al (eds) Safety and reliability of complex engineered systems: Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, Zürich, Switzerland, 7–10 September 2015, Taylor & Francis Group, London, pp 4151–4159
28.
Zurück zum Zitat Grigoriu M (1982/83) Methods for approximate reliability analysis. Struct Saf 1(2):155–165 Grigoriu M (1982/83) Methods for approximate reliability analysis. Struct Saf 1(2):155–165
29.
Zurück zum Zitat Schwefel HP (1991) Numerical optimization for computer models. Wiley, Chichester Schwefel HP (1991) Numerical optimization for computer models. Wiley, Chichester
30.
Zurück zum Zitat ČSN 73 6222 (2009) Load bearing capacity of road bridges. Czech Office for Standards, Metrology and Testing, Prague (in Czech) ČSN 73 6222 (2009) Load bearing capacity of road bridges. Czech Office for Standards, Metrology and Testing, Prague (in Czech)
32.
Zurück zum Zitat Technical Specifications TP 224 (2010) Ověřování existujících betonových mostů pozemních komunikací. Ministry of Transport, Department of Road Infrastructure, Prague (in Czech) Technical Specifications TP 224 (2010) Ověřování existujících betonových mostů pozemních komunikací. Ministry of Transport, Department of Road Infrastructure, Prague (in Czech)
33.
Zurück zum Zitat Šomodíková M, Doležel J, Lehký D (2013) Probabilistic load bearing capacity assessment of post-tensioned composite bridge. In: Novák D, Vořechovský M (eds) Proceedings of the 11th International Probabilistic Workshop, Brno, 6–8 November 2013, pp 451–460 Šomodíková M, Doležel J, Lehký D (2013) Probabilistic load bearing capacity assessment of post-tensioned composite bridge. In: Novák D, Vořechovský M (eds) Proceedings of the 11th International Probabilistic Workshop, Brno, 6–8 November 2013, pp 451–460
34.
Zurück zum Zitat ČSN EN 1992-2 (2007) Eurocode 2: design of concrete structures—part 2: concrete bridges—design and detailing rules. Czech Standardization Institute, Prague (in Czech) ČSN EN 1992-2 (2007) Eurocode 2: design of concrete structures—part 2: concrete bridges—design and detailing rules. Czech Standardization Institute, Prague (in Czech)
35.
Zurück zum Zitat Šomodíková M, Lehký D, Doležel J, Novák D (2014) Time dependent probabilistic analysis of a deteriorating reinforced concrete bridge. In: Furuta H, Frangopol DM, Akiyama M (eds) Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014)—life-cycle of structural systems: design, assessment, maintenance and management, Tokyo, Japan. Taylor & Francis Group, London, pp 1852–1858 Šomodíková M, Lehký D, Doležel J, Novák D (2014) Time dependent probabilistic analysis of a deteriorating reinforced concrete bridge. In: Furuta H, Frangopol DM, Akiyama M (eds) Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014)—life-cycle of structural systems: design, assessment, maintenance and management, Tokyo, Japan. Taylor & Francis Group, London, pp 1852–1858
Metadaten
Titel
Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method
verfasst von
David Lehký
Martina Šomodíková
Publikationsdatum
19.07.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2485-3

Weitere Artikel der Ausgabe 6/2017

Neural Computing and Applications 6/2017 Zur Ausgabe

Engineering Applications of Neural Networks

Local learning regularization networks for localized regression

Premium Partner