Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2023

16.07.2022 | Research Article

Repetitive transcranial magnetic stimulation enhances the neuronal excitability of mice by regulating dynamic characteristics of Granule cells’ Ion channels

verfasst von: Haijun Zhu, Xiaonan Yin, Huilan Yang, Rui Fu, Wentao Hou, Chong Ding, Guizhi Xu

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to explore the effects of acute high-frequency repetitive transcranial magnetic stimulation (hf-rTMS) on neuronal excitability of granule cells in the hippocampal dentate gyrus, as well as the underlying intrinsic mediating mechanisms by which rTMS regulates neuronal excitability. First, high-frequency single TMS was used to measure the motor threshold (MT) of mice. Then, rTMS with different intensities of 0 MT (control), 0.8 MT, and 1.2 MT were applied to acute mice brain slices. Next, patch-clamp technique was used to record the resting membrane potential and evoked nerve discharge of granule cells, as well as the voltage-gated sodium current (INa) of voltage-gated sodium channels (VGSCs), transient outward potassium current (IA) and delayed rectifier potassium current (IK) of voltage-gated potassium channels (Kv). Results showed that acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly activated INa and inhibited IA and IK compared with control group, due to the changes of dynamic characteristics of VGSCs and Kv. Acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly increased membrane potential and nerve discharge frequency. Therefore, changing dynamic characteristics of VGSCs and Kv, activating INa and inhibiting IA and IK might be one of the intrinsic mediating mechanisms by which rTMS enhanced the neuronal excitability of granular cells, and this regulatory effect increased with the increase of stimulus intensity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ah Sen CB, Fassett HJ, El-Sayes J et al (2017) Active and resting motor threshold are efficiently obtained with adaptive threshold hunting. PLoS ONE 12(10):e0186007PubMedPubMedCentralCrossRef Ah Sen CB, Fassett HJ, El-Sayes J et al (2017) Active and resting motor threshold are efficiently obtained with adaptive threshold hunting. PLoS ONE 12(10):e0186007PubMedPubMedCentralCrossRef
Zurück zum Zitat Ahmed MA, Darwish ES, Khedr EM et al (2012) Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol 259(1):83–92PubMedCrossRef Ahmed MA, Darwish ES, Khedr EM et al (2012) Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol 259(1):83–92PubMedCrossRef
Zurück zum Zitat Banerjee J, Sorrell ME, Celnik PA et al (2017) Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS ONE 12(1):e0170528PubMedPubMedCentralCrossRef Banerjee J, Sorrell ME, Celnik PA et al (2017) Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS ONE 12(1):e0170528PubMedPubMedCentralCrossRef
Zurück zum Zitat Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMedCrossRef Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMedCrossRef
Zurück zum Zitat Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9(5):357–369PubMedCrossRef Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9(5):357–369PubMedCrossRef
Zurück zum Zitat Cahalan MD, Chandy KG (1997) Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 8(6):749–756PubMedCrossRef Cahalan MD, Chandy KG (1997) Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 8(6):749–756PubMedCrossRef
Zurück zum Zitat Cambiaghi M, Crupi R, Bautista EL et al (2020) The Effects of 1-Hz rTMS on emotional behavior and dendritic complexity of mature and newly generated dentate gyrus neurons in male mice. Int J Environ Res Public Health 17(11):4074PubMedPubMedCentralCrossRef Cambiaghi M, Crupi R, Bautista EL et al (2020) The Effects of 1-Hz rTMS on emotional behavior and dendritic complexity of mature and newly generated dentate gyrus neurons in male mice. Int J Environ Res Public Health 17(11):4074PubMedPubMedCentralCrossRef
Zurück zum Zitat Cambiaghi M, Cherchi L, Masin L et al (2021) High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex. Behav Brain Res 410:113352PubMedCrossRef Cambiaghi M, Cherchi L, Masin L et al (2021) High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex. Behav Brain Res 410:113352PubMedCrossRef
Zurück zum Zitat Camerino DC, Desaphy JF, Tricarico D et al (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145PubMedCrossRef Camerino DC, Desaphy JF, Tricarico D et al (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145PubMedCrossRef
Zurück zum Zitat Castle NA (2010) Pharmacological modulation of voltage-gated potassium channels as a therapeutic strategy. Expert Opin Ther Pat 20(11):1471–1503PubMedCrossRef Castle NA (2010) Pharmacological modulation of voltage-gated potassium channels as a therapeutic strategy. Expert Opin Ther Pat 20(11):1471–1503PubMedCrossRef
Zurück zum Zitat Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242(4875):50–61PubMedCrossRef Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242(4875):50–61PubMedCrossRef
Zurück zum Zitat Dagan M, Herman T, Mirelman A et al (2017) The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res 235(8):2463–2472PubMedCrossRef Dagan M, Herman T, Mirelman A et al (2017) The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res 235(8):2463–2472PubMedCrossRef
Zurück zum Zitat Dunn AR, Kaczorowski CC (2019) Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer’s disease, and genetic diversity. Neurobiol Learn Mem 164:107069PubMedPubMedCentralCrossRef Dunn AR, Kaczorowski CC (2019) Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer’s disease, and genetic diversity. Neurobiol Learn Mem 164:107069PubMedPubMedCentralCrossRef
Zurück zum Zitat Ekberg J, Craik DJ, Adams DJ (2008) Conotoxin modulation of voltage-gated sodium channels. Int J Biochem Cell Biol 40(11):2363–2368PubMedCrossRef Ekberg J, Craik DJ, Adams DJ (2008) Conotoxin modulation of voltage-gated sodium channels. Int J Biochem Cell Biol 40(11):2363–2368PubMedCrossRef
Zurück zum Zitat Fleidervish IA, Libman L, Katz E et al (2008) Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na + channels. Proc Natl Acad Sci U S A 105(48):18994–18999PubMedPubMedCentralCrossRef Fleidervish IA, Libman L, Katz E et al (2008) Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na + channels. Proc Natl Acad Sci U S A 105(48):18994–18999PubMedPubMedCentralCrossRef
Zurück zum Zitat Fujiki M, Yee KM, Steward O (2020) Non-invasive high frequency repetitive transcranial magnetic stimulation (hfrTMS) robustly activates molecular pathways implicated in neuronal growth and synaptic plasticity in select populations of neurons. Front Neurosci 14:558PubMedPubMedCentralCrossRef Fujiki M, Yee KM, Steward O (2020) Non-invasive high frequency repetitive transcranial magnetic stimulation (hfrTMS) robustly activates molecular pathways implicated in neuronal growth and synaptic plasticity in select populations of neurons. Front Neurosci 14:558PubMedPubMedCentralCrossRef
Zurück zum Zitat Huxley HE, Kendrew JC (1952) Extractability of the Lotmar-Picken material from dried muscle. Nature 170(4334):882PubMedCrossRef Huxley HE, Kendrew JC (1952) Extractability of the Lotmar-Picken material from dried muscle. Nature 170(4334):882PubMedCrossRef
Zurück zum Zitat Jones DK, Ruben PC (2008) Biophysical defects in voltage.gated sodium channels associated with long QT and Brugada syndromes. Channels (Austin) 2(2):70–80PubMedCrossRef Jones DK, Ruben PC (2008) Biophysical defects in voltage.gated sodium channels associated with long QT and Brugada syndromes. Channels (Austin) 2(2):70–80PubMedCrossRef
Zurück zum Zitat Klomjai W, Katz R, Lackmy-Vallee A (2015) Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 58(4):208–213PubMedCrossRef Klomjai W, Katz R, Lackmy-Vallee A (2015) Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 58(4):208–213PubMedCrossRef
Zurück zum Zitat Koch G, Bonni S, Pellicciari MC et al (2018) Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage 169:302–311PubMedCrossRef Koch G, Bonni S, Pellicciari MC et al (2018) Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage 169:302–311PubMedCrossRef
Zurück zum Zitat Li Y, Li L, Pan W (2019) Repetitive transcranial magnetic stimulation (rTMS) modulates hippocampal structural synaptic plasticity in rats. Physiol Res 68(1):99–105PubMedCrossRef Li Y, Li L, Pan W (2019) Repetitive transcranial magnetic stimulation (rTMS) modulates hippocampal structural synaptic plasticity in rats. Physiol Res 68(1):99–105PubMedCrossRef
Zurück zum Zitat Maeda F, Keenan JP, Tormos JM et al (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111(5):800–805PubMedCrossRef Maeda F, Keenan JP, Tormos JM et al (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111(5):800–805PubMedCrossRef
Zurück zum Zitat Mantegazza M, Curia G, Biagini G et al (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9(4):413–424PubMedCrossRef Mantegazza M, Curia G, Biagini G et al (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9(4):413–424PubMedCrossRef
Zurück zum Zitat Nardone R, Tezzon F, Holler Y et al (2014) Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 129(6):351–366PubMedCrossRef Nardone R, Tezzon F, Holler Y et al (2014) Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 129(6):351–366PubMedCrossRef
Zurück zum Zitat Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799–822PubMedCrossRef Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799–822PubMedCrossRef
Zurück zum Zitat Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiol (Bethesda) 19:285–292 Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiol (Bethesda) 19:285–292
Zurück zum Zitat Parthoens J, Verhaeghe J, Wyckhuys T et al (2014) Small-animal repetitive transcranial magnetic stimulation combined with [(1)(8)F]-FDG microPET to quantify the neuromodulation effect in the rat brain. Neuroscience 275:436–443PubMedCrossRef Parthoens J, Verhaeghe J, Wyckhuys T et al (2014) Small-animal repetitive transcranial magnetic stimulation combined with [(1)(8)F]-FDG microPET to quantify the neuromodulation effect in the rat brain. Neuroscience 275:436–443PubMedCrossRef
Zurück zum Zitat Peruzzotti-Jametti L, Bacigaluppi M, Sandrone S et al (2013) Emerging subspecialties in neurology: transcranial stimulation. Neurology 80(4):e33–35PubMedCrossRef Peruzzotti-Jametti L, Bacigaluppi M, Sandrone S et al (2013) Emerging subspecialties in neurology: transcranial stimulation. Neurology 80(4):e33–35PubMedCrossRef
Zurück zum Zitat Rossi S, Hallett M, Rossini PM et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039PubMedPubMedCentralCrossRef Rossi S, Hallett M, Rossini PM et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039PubMedPubMedCentralCrossRef
Zurück zum Zitat Schulz R, Gerloff C, Hummel FC (2013) Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64(1):579PubMedCrossRef Schulz R, Gerloff C, Hummel FC (2013) Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64(1):579PubMedCrossRef
Zurück zum Zitat Shah NH, Aizenman E (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5(1):38–58PubMedCrossRef Shah NH, Aizenman E (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5(1):38–58PubMedCrossRef
Zurück zum Zitat Speer AM, Benson BE, Kimbrell TK et al (2009) Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET. J Affect Disord 115(3):386–394PubMedCrossRef Speer AM, Benson BE, Kimbrell TK et al (2009) Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET. J Affect Disord 115(3):386–394PubMedCrossRef
Zurück zum Zitat Sun P, Wang F, Wang L et al (2011) Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci 31(45):16464–16472PubMedPubMedCentralCrossRef Sun P, Wang F, Wang L et al (2011) Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci 31(45):16464–16472PubMedPubMedCentralCrossRef
Zurück zum Zitat Tan T, Xie J, Tong Z et al (2013) Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res 1520:23–35PubMedCrossRef Tan T, Xie J, Tong Z et al (2013) Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res 1520:23–35PubMedCrossRef
Zurück zum Zitat Wang HL, Xian XH, Wang YY et al (2015) Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol Learn Mem 118:1–7PubMedCrossRef Wang HL, Xian XH, Wang YY et al (2015) Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol Learn Mem 118:1–7PubMedCrossRef
Zurück zum Zitat Wijesinghe R, Camp AJ (2011) Intrinsic neuronal excitability: implications for health and disease. Biomol Concepts 2(4):247–259PubMedCrossRef Wijesinghe R, Camp AJ (2011) Intrinsic neuronal excitability: implications for health and disease. Biomol Concepts 2(4):247–259PubMedCrossRef
Zurück zum Zitat Zhu HJ, Xu GZ, Fu LD et al (2020) The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice. Electromagn Biol Med 39(1):9–19PubMedCrossRef Zhu HJ, Xu GZ, Fu LD et al (2020) The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice. Electromagn Biol Med 39(1):9–19PubMedCrossRef
Zurück zum Zitat Zhu HJ, Xu GZ, Li Y et al (2021) Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 173:90–98PubMedCrossRef Zhu HJ, Xu GZ, Li Y et al (2021) Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 173:90–98PubMedCrossRef
Metadaten
Titel
Repetitive transcranial magnetic stimulation enhances the neuronal excitability of mice by regulating dynamic characteristics of Granule cells’ Ion channels
verfasst von
Haijun Zhu
Xiaonan Yin
Huilan Yang
Rui Fu
Wentao Hou
Chong Ding
Guizhi Xu
Publikationsdatum
16.07.2022
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2023
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09837-8

Weitere Artikel der Ausgabe 2/2023

Cognitive Neurodynamics 2/2023 Zur Ausgabe

Neuer Inhalt