Skip to main content
Erschienen in: Emission Control Science and Technology 1/2024

13.03.2024

Research on Regeneration Technology for Gasoline Particulate Filters Using Microwave Heating

verfasst von: Toru Uenishi, Kazuhiko Koike, Takumi Suzawa

Erschienen in: Emission Control Science and Technology | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The lower exhaust gas temperatures in hybrid vehicles can make it difficult to regenerate gasoline particulate filters (GPF). Filter regeneration technology using microwave (MW) heating has long been studied and for diesel particulate filter (DPF). In this study, a feasibility study was conducted to investigate the feasibility of filter regeneration by MW heating in a GPF, which has a different substrate material and catalyst material from DPFs. First, we demonstrated that particulate matter (PM) can be oxidized by MW heating with a test piece size GPF where heat transfer and MW intensity bias can be ignored. Next, we demonstrated that filter regeneration is possible even in the presence of heat dissipation and MW intensity bias using a full-size GPF, which is used in the market. These experiments showed that ambient temperature and MW power affect filter regeneration performance. On the other hand, when the filter was heated at high power to reduce the filter regeneration time, the PM oxidation caused thermal runaway, which resulted in high filter temperature and catalyst degradation. Furthermore, using numerical calculations, electromagnetic wave measurements, and visualization techniques, it was shown that the filter overheating was not caused by biased MW intensity, but by biased gas flow in the GPF due to biased GPF catalyst coatings and PM loading distribution. Finally, to achieve both thermal runaway prevention and filter regeneration performance, we proposed a filter regeneration strategy in which PM is oxidized with gradually increasing MW power; although thermal runaway prevention is possible, further improvement is needed in the future, since the results suggest that the filter regeneration time may increase. Based on the findings of this study, we believe that this MW heating-based GPF regeneration technology can contribute to carbon neutrality by overcoming the issue of the difficulty of regenerating GPF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
19.
21.
22.
Metadaten
Titel
Research on Regeneration Technology for Gasoline Particulate Filters Using Microwave Heating
verfasst von
Toru Uenishi
Kazuhiko Koike
Takumi Suzawa
Publikationsdatum
13.03.2024
Verlag
Springer International Publishing
Erschienen in
Emission Control Science and Technology / Ausgabe 1/2024
Print ISSN: 2199-3629
Elektronische ISSN: 2199-3637
DOI
https://doi.org/10.1007/s40825-024-00239-2

Weitere Artikel der Ausgabe 1/2024

Emission Control Science and Technology 1/2024 Zur Ausgabe

    Premium Partner