Skip to main content
Erschienen in: Journal of Polymer Research 5/2021

01.05.2021 | ORIGINAL PAPER

Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by Rheology

verfasst von: Hengyu Luo, Hui Han, Houfang Chi, Junyu Li, Songmei Zhao, Yong Tao, Haiqing Hu

Erschienen in: Journal of Polymer Research | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The viscous flow transition of triblock copolymer styrene-isoprene-styrene (SIS5562) was studied by rheological methods. A broad loss factor (tan \(\delta\)) peak at 152.5 ℃ appeared on the dynamic viscoelastic spectrum under experimental conditions. Some similar peaks had been attributed to order-order transition (OOT) or order-disorder transition (ODT) in some research. In this system, the SAXS, time-temperature superposition (TTS) and Han plots proved that the microstructure of the SIS5562 did not undergo OOT or ODT transition in the temperature range. It may be the viscous flow transition as we supposed previously. The rheology study by capillary and rotation rheometer verified that the viscous flow transition temperature (Tf) was around 150 ℃.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38CrossRef Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38CrossRef
2.
Zurück zum Zitat Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440PubMedCrossRef Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440PubMedCrossRef
3.
Zurück zum Zitat Yang HW, Canich JAM, Licciardi GF (1996) Thermoplastic elastomers. US Yang HW, Canich JAM, Licciardi GF (1996) Thermoplastic elastomers. US
4.
5.
Zurück zum Zitat Holden G, Bishop ET, Legge NR (2010) Thermoplastic elastomers. Journal of Polymer Ence Part C Polymer Symposia 26:37–57CrossRef Holden G, Bishop ET, Legge NR (2010) Thermoplastic elastomers. Journal of Polymer Ence Part C Polymer Symposia 26:37–57CrossRef
6.
Zurück zum Zitat Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557PubMedCrossRef Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557PubMedCrossRef
7.
Zurück zum Zitat Lee H-K, Zin W-C (2000) Phase diagrams for the blends of a styrene-butadiene diblock copolymer and a styrene-butadiene random copolymer: Theory. Macromolecules 33:2894–2900CrossRef Lee H-K, Zin W-C (2000) Phase diagrams for the blends of a styrene-butadiene diblock copolymer and a styrene-butadiene random copolymer: Theory. Macromolecules 33:2894–2900CrossRef
8.
Zurück zum Zitat Zhu Y, Gido S, Iatrou H, Nikos H, Mays J (2003) Microphase separation of cyclic block copolymers of styrene and butadiene and of their corresponding linear triblock copolymers. Macromolecules 36:148–152CrossRef Zhu Y, Gido S, Iatrou H, Nikos H, Mays J (2003) Microphase separation of cyclic block copolymers of styrene and butadiene and of their corresponding linear triblock copolymers. Macromolecules 36:148–152CrossRef
9.
Zurück zum Zitat Yamaguchi D, Hashimoto T, Han CD, Baek DM, Kim JK, Shi A-C (1997) Order−disorder transition, microdomain structure, and phase behavior in binary mixtures of low molecular weight polystyrene-block-polyisoprene copolymers. Macromolecules 30:5832–5842CrossRef Yamaguchi D, Hashimoto T, Han CD, Baek DM, Kim JK, Shi A-C (1997) Order−disorder transition, microdomain structure, and phase behavior in binary mixtures of low molecular weight polystyrene-block-polyisoprene copolymers. Macromolecules 30:5832–5842CrossRef
10.
Zurück zum Zitat Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42:5642–5651CrossRef Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42:5642–5651CrossRef
11.
Zurück zum Zitat Bates F, Rosedale J, Fredrickson G (1990) Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. J Chem Phys 92:6255–6270CrossRef Bates F, Rosedale J, Fredrickson G (1990) Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. J Chem Phys 92:6255–6270CrossRef
12.
Zurück zum Zitat Ogawa T, Sakamoto N, Hashimoto T, Han CD, Baek DM (1996) Effect of volume fraction on the order− disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 2. Order− disorder transition temperature determined by small-angle X-ray scattering. Macromolecules 29:2113–2123CrossRef Ogawa T, Sakamoto N, Hashimoto T, Han CD, Baek DM (1996) Effect of volume fraction on the order− disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 2. Order− disorder transition temperature determined by small-angle X-ray scattering. Macromolecules 29:2113–2123CrossRef
13.
Zurück zum Zitat Hashimoto T, Ijichi Y, Fetters L (1988) Order–disorder transition of starblock copolymers. J Chem Phys 89:2463–2472CrossRef Hashimoto T, Ijichi Y, Fetters L (1988) Order–disorder transition of starblock copolymers. J Chem Phys 89:2463–2472CrossRef
14.
Zurück zum Zitat Qin J, de Pablo JJ (2016) Ordering transition in salt-doped diblock copolymers. Macromolecules 49:3630–3638CrossRef Qin J, de Pablo JJ (2016) Ordering transition in salt-doped diblock copolymers. Macromolecules 49:3630–3638CrossRef
15.
Zurück zum Zitat Winter HH, Scott DB, Gronski W, Okamoto S, Hashimoto T (1993) Ordering by flow near the disorder-order transition of a triblock copolymer styrene-isoprene-styrene. Macromolecules 26:7236–7244CrossRef Winter HH, Scott DB, Gronski W, Okamoto S, Hashimoto T (1993) Ordering by flow near the disorder-order transition of a triblock copolymer styrene-isoprene-styrene. Macromolecules 26:7236–7244CrossRef
16.
Zurück zum Zitat Krishnamoorti R, Modi MA, Tse MF, Wang HC (2000) Pathway and kinetics of cylinder-to-sphere order−order transition in block copolymers. Macromolecules 33:3810–3817CrossRef Krishnamoorti R, Modi MA, Tse MF, Wang HC (2000) Pathway and kinetics of cylinder-to-sphere order−order transition in block copolymers. Macromolecules 33:3810–3817CrossRef
17.
Zurück zum Zitat Hahn H, Chakraborty AK, Das J, Pople JA, Balsara NP (2005) Order−disorder transitions in cross-linked block copolymer solids. Macromolecules 38:1277–1285CrossRef Hahn H, Chakraborty AK, Das J, Pople JA, Balsara NP (2005) Order−disorder transitions in cross-linked block copolymer solids. Macromolecules 38:1277–1285CrossRef
18.
Zurück zum Zitat Maher MJ, Jones SD, Zografos A, Xu J, Schibur HJ, Bates FS (2018) The order-disorder transition in graft block copolymers. Macromolecules 51:232–241CrossRef Maher MJ, Jones SD, Zografos A, Xu J, Schibur HJ, Bates FS (2018) The order-disorder transition in graft block copolymers. Macromolecules 51:232–241CrossRef
19.
Zurück zum Zitat Lee S-H, Char K, Kim G (2000) Order−disorder and order−order transitions in mixtures of highly asymmetric triblock copolymer and low molecular weight homopolymers. Macromolecules 33:7072–7083CrossRef Lee S-H, Char K, Kim G (2000) Order−disorder and order−order transitions in mixtures of highly asymmetric triblock copolymer and low molecular weight homopolymers. Macromolecules 33:7072–7083CrossRef
20.
Zurück zum Zitat Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRef Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRef
21.
Zurück zum Zitat Tanaka Y, Hasegawa H, Hashimoto T, Ribbe A, Sugiyama K, Hirao A, Nakahama S (1999) A study of three-phase structures in ABC triblock copolymers. Polym J 31:989–994CrossRef Tanaka Y, Hasegawa H, Hashimoto T, Ribbe A, Sugiyama K, Hirao A, Nakahama S (1999) A study of three-phase structures in ABC triblock copolymers. Polym J 31:989–994CrossRef
22.
Zurück zum Zitat Mathew I, George KE, Francis DJ (1994) Viscous and elastic behaviour of SEBS triblock copolymer. Die Angewandte Makromolekulare Chemie 217:51–59CrossRef Mathew I, George KE, Francis DJ (1994) Viscous and elastic behaviour of SEBS triblock copolymer. Die Angewandte Makromolekulare Chemie 217:51–59CrossRef
23.
Zurück zum Zitat Lee P-C, Wang C-C, Chen C-Y (2020) Synthesis of high-vinyl isoprene and styrene triblock copolymers via anionic polymerization with difunctional t-BuLi initiator. Eur Polym J 124:109476CrossRef Lee P-C, Wang C-C, Chen C-Y (2020) Synthesis of high-vinyl isoprene and styrene triblock copolymers via anionic polymerization with difunctional t-BuLi initiator. Eur Polym J 124:109476CrossRef
24.
Zurück zum Zitat Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Effect of addition of a neutral solvent on the order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:5321–5330CrossRef Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Effect of addition of a neutral solvent on the order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:5321–5330CrossRef
25.
Zurück zum Zitat Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order-disorder transition temperature of polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 23:561–570CrossRef Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order-disorder transition temperature of polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 23:561–570CrossRef
26.
Zurück zum Zitat Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:1621–1632CrossRef Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:1621–1632CrossRef
27.
Zurück zum Zitat Ferri D, Canetti M (2006) Spurt and melt flow distorsions of linear styrene-isoprene-styrene triblock copolymers. J Rheol 50:611–624CrossRef Ferri D, Canetti M (2006) Spurt and melt flow distorsions of linear styrene-isoprene-styrene triblock copolymers. J Rheol 50:611–624CrossRef
28.
Zurück zum Zitat Han H, Tian G, Gao Q, Hu H, Zhao J, Li J (2020) Wall slip of styrene-isoprene-styrene (SIS) triblock copolymer induced by micro elastic phase. Polymer 209:122990CrossRef Han H, Tian G, Gao Q, Hu H, Zhao J, Li J (2020) Wall slip of styrene-isoprene-styrene (SIS) triblock copolymer induced by micro elastic phase. Polymer 209:122990CrossRef
29.
Zurück zum Zitat Leibler Ludwik (1980) Theory of microphase separation in block copolymers. J Dalian Inst Tech 13:1602–1617 Leibler Ludwik (1980) Theory of microphase separation in block copolymers. J Dalian Inst Tech 13:1602–1617
30.
Zurück zum Zitat Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRef Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRef
31.
Zurück zum Zitat Wang M-J, Lu SX, Mahmud K (2000) Carbon–silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica-dual-phase-filler-filled vulcanizates. J Polym Sci B Polym Phys 38:1240–1249CrossRef Wang M-J, Lu SX, Mahmud K (2000) Carbon–silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica-dual-phase-filler-filled vulcanizates. J Polym Sci B Polym Phys 38:1240–1249CrossRef
32.
Zurück zum Zitat Mahdavi R, Goodarzi V, Ali Khonakdar H, Hassan Jafari S, Reza Saeb M, Shojaei S (2018) Experimental analysis and prediction of viscoelastic creep properties of PP/EVA/LDH nanocomposites using master curves based on time–temperature superposition. J Appl Polym Sci 135:46725CrossRef Mahdavi R, Goodarzi V, Ali Khonakdar H, Hassan Jafari S, Reza Saeb M, Shojaei S (2018) Experimental analysis and prediction of viscoelastic creep properties of PP/EVA/LDH nanocomposites using master curves based on time–temperature superposition. J Appl Polym Sci 135:46725CrossRef
33.
Zurück zum Zitat Collins DA, Yakacki CM, Lightbody D, Patel RR, Frick CP (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly(para-phenylene). J Appl Polym Sci 133:42903CrossRef Collins DA, Yakacki CM, Lightbody D, Patel RR, Frick CP (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly(para-phenylene). J Appl Polym Sci 133:42903CrossRef
34.
Zurück zum Zitat Vaidyanathan TK, Vaidyanathan J, Cherian Z (2003) Extended creep behavior of dental composites using time–temperature superposition principle. Dent Mater 19:46–53PubMedCrossRef Vaidyanathan TK, Vaidyanathan J, Cherian Z (2003) Extended creep behavior of dental composites using time–temperature superposition principle. Dent Mater 19:46–53PubMedCrossRef
35.
Zurück zum Zitat Zhang T, Zhao Y, Zhang B (2018) A method based on the time–temperature superposition principle to predict pressurization time in compression molding. J Appl Polym Sci 135:46664CrossRef Zhang T, Zhao Y, Zhang B (2018) A method based on the time–temperature superposition principle to predict pressurization time in compression molding. J Appl Polym Sci 135:46664CrossRef
36.
Zurück zum Zitat Nakano T (2013) Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech Time-Depend Mater 17:439–447CrossRef Nakano T (2013) Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech Time-Depend Mater 17:439–447CrossRef
37.
Zurück zum Zitat Jamarani R, Erythropel HC, Burkat D, Nicell JA, Leask RL, Maric M (2017) Rheology of green plasticizer/poly(vinyl chloride) blends via time-temperature superposition. Processes 5:43CrossRef Jamarani R, Erythropel HC, Burkat D, Nicell JA, Leask RL, Maric M (2017) Rheology of green plasticizer/poly(vinyl chloride) blends via time-temperature superposition. Processes 5:43CrossRef
38.
Zurück zum Zitat Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS in LAOS: validation of time-temperature superposition under large amplitude oscillatory shear. Rheologica Acta 50:795–807CrossRef Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS in LAOS: validation of time-temperature superposition under large amplitude oscillatory shear. Rheologica Acta 50:795–807CrossRef
39.
Zurück zum Zitat Dealy J, Plazek D (2009) Time-temperature superposition-a users guide. Rheol Bull 78:16–31 Dealy J, Plazek D (2009) Time-temperature superposition-a users guide. Rheol Bull 78:16–31
40.
Zurück zum Zitat Naya S, Meneses A, Tarrío-Saavedra J, Artiaga R, López-Beceiro J, Gracia-Fernández C (2013) New method for estimating shift factors in time–temperature superposition models. J Therm Anal Calorim 113:453–460CrossRef Naya S, Meneses A, Tarrío-Saavedra J, Artiaga R, López-Beceiro J, Gracia-Fernández C (2013) New method for estimating shift factors in time–temperature superposition models. J Therm Anal Calorim 113:453–460CrossRef
41.
Zurück zum Zitat Bae J-E, Cho KS, Seo KH, Kang D-G (2011) Application of geometric algorithm of time-temperature superposition to linear viscoelasticity of rubber compounds. Korea-Australia Rheology Journal 23:81–87CrossRef Bae J-E, Cho KS, Seo KH, Kang D-G (2011) Application of geometric algorithm of time-temperature superposition to linear viscoelasticity of rubber compounds. Korea-Australia Rheology Journal 23:81–87CrossRef
42.
Zurück zum Zitat Chronakis IS, Doublier J-L, Piculell L (2000) Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. Int J Biol Macromol 28:1–14PubMedCrossRef Chronakis IS, Doublier J-L, Piculell L (2000) Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. Int J Biol Macromol 28:1–14PubMedCrossRef
43.
Zurück zum Zitat Oroian M, Amariei S, Escriche I, Gutt G (2013) A viscoelastic model for honeys using the time-temperature superposition principle (TTSP). Food Bioprocess Technol 6:2251–2260CrossRef Oroian M, Amariei S, Escriche I, Gutt G (2013) A viscoelastic model for honeys using the time-temperature superposition principle (TTSP). Food Bioprocess Technol  6:2251–2260CrossRef
44.
Zurück zum Zitat Tsuji T, Mochizuki K, Okada K, Hayashi Y, Obata Y, Takayama K, Onuki Y (2019) Time–temperature superposition principle for the kinetic analysis of destabilization of pharmaceutical emulsions. Int J Pharm 563:406–412PubMedCrossRef Tsuji T, Mochizuki K, Okada K, Hayashi Y, Obata Y, Takayama K, Onuki Y (2019) Time–temperature superposition principle for the kinetic analysis of destabilization of pharmaceutical emulsions. Int J Pharm 563:406–412PubMedCrossRef
45.
Zurück zum Zitat Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol 43:167–196CrossRef Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol  43:167–196CrossRef
46.
Zurück zum Zitat Hadjichristidis N, Pispas S, Floudas G (2003) Viscoelastic properties of block copolymers. John Wiley & Sons, Ltd Hadjichristidis N, Pispas S, Floudas G (2003) Viscoelastic properties of block copolymers. John Wiley & Sons, Ltd
47.
Zurück zum Zitat Foerster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W (1994) Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules 27:6922–6935CrossRef Foerster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W (1994) Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules 27:6922–6935CrossRef
48.
Zurück zum Zitat Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806CrossRef Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806CrossRef
49.
Zurück zum Zitat Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto N, Hashimoto T (1995) Effect of volume fraction on the order-disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 1. order-disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062CrossRef Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto N, Hashimoto T (1995) Effect of volume fraction on the order-disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 1. order-disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062CrossRef
50.
Zurück zum Zitat Han CD, Kim J, Kim JK (1989) Determination of the order-disorder transition temperature of block copolymers. Macromolecules 22:383–394CrossRef Han CD, Kim J, Kim JK (1989) Determination of the order-disorder transition temperature of block copolymers. Macromolecules 22:383–394CrossRef
51.
Zurück zum Zitat Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci B Polym Phys 25:1741–1764CrossRef Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci B Polym Phys 25:1741–1764CrossRef
52.
Zurück zum Zitat Han CD, Kim JK (1989) Molecular theory for the viscoelasticity of compatible polymer mixtures. 2. Tube model with reptation and constraint release contributions. Macromolecules 22:4292–4302CrossRef Han CD, Kim JK (1989) Molecular theory for the viscoelasticity of compatible polymer mixtures. 2. Tube model with reptation and constraint release contributions. Macromolecules 22:4292–4302CrossRef
53.
Zurück zum Zitat Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef
54.
Zurück zum Zitat Huggins ML (1961) Viscoelastic Properties of Polymers. J Am Chem Soc 83:4110–4111CrossRef Huggins ML (1961) Viscoelastic Properties of Polymers. J Am Chem Soc  83:4110–4111CrossRef
55.
56.
Zurück zum Zitat Faerber GL, Kim SW, Eyring H (1970) Viscous flow and glass transition temperature of some hydrocarbons. J Phys Chem 74:3510–3518 CrossRef Faerber GL, Kim SW, Eyring H (1970) Viscous flow and glass transition temperature of some hydrocarbons. J Phys Chem 74:3510–3518 CrossRef
57.
Zurück zum Zitat Li Y, Liu X, Zhuang X, Jin X, Liu Q (2016) Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers and Polymers 17:778–788CrossRef Li Y, Liu X, Zhuang X, Jin X, Liu Q (2016) Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers and Polymers 17:778–788CrossRef
58.
Zurück zum Zitat Drabek J, Zatloukal M, Martyn M (2018) Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. J Non-Newtonian Fluid Mech 251:107–118CrossRef Drabek J, Zatloukal M, Martyn M (2018) Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. J Non-Newtonian Fluid Mech  251:107–118CrossRef
59.
Zurück zum Zitat Yanovsky Y (1993) Polymer Rheology: Theory and Practice Yanovsky Y (1993) Polymer Rheology: Theory and Practice
60.
Zurück zum Zitat Zheng Q, Du M, Yang B, Wu G (2001) Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer 42:5743–5747CrossRef Zheng Q, Du M, Yang B, Wu G (2001) Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer 42:5743–5747CrossRef
61.
Zurück zum Zitat Zheng Q, Zhang XW, Pan Y, Yi XS (2002) Polystyrene/Sn–Pb alloy blends. I. Dynamic rheological behavior. J Appl Polym Sci 86:3166–3172CrossRef Zheng Q, Zhang XW, Pan Y, Yi XS (2002) Polystyrene/Sn–Pb alloy blends. I. Dynamic rheological behavior. J Appl Polym Sci 86:3166–3172CrossRef
Metadaten
Titel
Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by Rheology
verfasst von
Hengyu Luo
Hui Han
Houfang Chi
Junyu Li
Songmei Zhao
Yong Tao
Haiqing Hu
Publikationsdatum
01.05.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02521-1

Weitere Artikel der Ausgabe 5/2021

Journal of Polymer Research 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.