Skip to main content
Erschienen in: Quantum Information Processing 10/2021

01.10.2021

Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes

verfasst von: Ling-Ying Zhu, Yong Dong, Ji Zhang, Cui-Lu Zhai, Yaxin Zhai, Le-Man Kuang

Erschienen in: Quantum Information Processing | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a dynamically dark-mode (DDM) scheme to realize the reversible quantum conversion between microwave and optical photons in an electro-optomechanical (EOM) model. It is shown that two DDMs appear at certain times during the dynamical evolution of the EOM model. It is demonstrated that the DDMs can induce two kinds of reversible and highly efficient quantum conversion between the microwave and optical fields, the conditional quantum conversion (CQC) and the entanglement-assisted quantum conversion (EAQC). The CQC happens at the condition of vanishing of the initial-state mean value of one of the microwave and optical fields and only depends on the coupling ratio of the system under consideration. The EAQC occurs in the presence of the initial-state entanglement between the microwave and optical fields. It is found that the EAQC can be manipulated by engineering the initial-state entanglement and the coupling ratio. It is indicated that it is possible to realize the entanglement-enhanced (or suppressed) quantum conversion through controlling the phase of the initial-state parameter. Our work highlights the power of generating reversible and highly efficient quantum conversion between microwave and optical photons by the DDMs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zeuthen, E., Schliesser, A., Sørensen, A.S., Taylor, J.M.: Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020)ADSCrossRef Zeuthen, E., Schliesser, A., Sørensen, A.S., Taylor, J.M.: Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020)ADSCrossRef
2.
Zurück zum Zitat Lambert, N.J., Rueda, A., Sedlmeir, F., Schwefel, H.G.L.: Coherent conversion between microwave and optical photons-An overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2019)CrossRef Lambert, N.J., Rueda, A., Sedlmeir, F., Schwefel, H.G.L.: Coherent conversion between microwave and optical photons-An overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2019)CrossRef
3.
Zurück zum Zitat Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J.P., Saffman, M., Spiropulu, M., Simon, C.: Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020)ADSCrossRef Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J.P., Saffman, M., Spiropulu, M., Simon, C.: Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020)ADSCrossRef
5.
Zurück zum Zitat Castelvecchi, D.: The quantum internet has arrived (and it hasn’t). Nature 554, 289 (2018) Castelvecchi, D.: The quantum internet has arrived (and it hasn’t). Nature 554, 289 (2018)
6.
Zurück zum Zitat Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)ADSCrossRef Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)ADSCrossRef
7.
Zurück zum Zitat Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: Avision for the road ahead. Science 362, eaam9288 (2018)ADSMATHCrossRef Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: Avision for the road ahead. Science 362, eaam9288 (2018)ADSMATHCrossRef
8.
Zurück zum Zitat Dong, C., Wang, Y., Wang, H.: Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2, 510 (2015)CrossRef Dong, C., Wang, Y., Wang, H.: Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2, 510 (2015)CrossRef
9.
Zurück zum Zitat Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724 (2018)ADSCrossRef Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724 (2018)ADSCrossRef
11.
Zurück zum Zitat Sørensen, A.S., van der Wal, C.H., Childress, L.I., Lukin, M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)ADSCrossRef Sørensen, A.S., van der Wal, C.H., Childress, L.I., Lukin, M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)ADSCrossRef
12.
Zurück zum Zitat Tian, L., Rabl, P., Blatt, R., Zoller, P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)ADSCrossRef Tian, L., Rabl, P., Blatt, R., Zoller, P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)ADSCrossRef
13.
Zurück zum Zitat Rabl, P., DeMille, D., Doyle, J.M., Lukin, M.D., Schoelkopf, R.J., Zoller, P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRef Rabl, P., DeMille, D., Doyle, J.M., Lukin, M.D., Schoelkopf, R.J., Zoller, P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRef
14.
Zurück zum Zitat O’Brien, C., Lauk, N., Blum, S., Morigi, G., Fleischhauer, M.: Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014) O’Brien, C., Lauk, N., Blum, S., Morigi, G., Fleischhauer, M.: Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014)
15.
Zurück zum Zitat Xia, K., Twamley, J.: Solid-state optical interconnect between distant superconducting quantum chips. Phys. Rev. A 91, 042307 (2015)ADSCrossRef Xia, K., Twamley, J.: Solid-state optical interconnect between distant superconducting quantum chips. Phys. Rev. A 91, 042307 (2015)ADSCrossRef
16.
Zurück zum Zitat Das, S., Elfving, V.E., Faez, S., Sørensen, A.S.: Interfacing superconducting qubits and single optical photons using molecules in waveguides. Phys. Rev. Lett. 118, 140501 (2017)ADSCrossRef Das, S., Elfving, V.E., Faez, S., Sørensen, A.S.: Interfacing superconducting qubits and single optical photons using molecules in waveguides. Phys. Rev. Lett. 118, 140501 (2017)ADSCrossRef
17.
Zurück zum Zitat Gard, B.T., Jacobs, K., McDermot, R., Saffman, M.: Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A 96, 013833 (2017)ADSCrossRef Gard, B.T., Jacobs, K., McDermot, R., Saffman, M.: Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A 96, 013833 (2017)ADSCrossRef
18.
Zurück zum Zitat Lekavicius, I., Golter, D.A., Oo, T., Wang, H.: Transfer of phase information between microwave and optical fields via an electron spin. Phys. Rev. Lett. 119, 063601 (2017)CrossRef Lekavicius, I., Golter, D.A., Oo, T., Wang, H.: Transfer of phase information between microwave and optical fields via an electron spin. Phys. Rev. Lett. 119, 063601 (2017)CrossRef
19.
Zurück zum Zitat Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016)ADSCrossRef Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016)ADSCrossRef
20.
21.
Zurück zum Zitat Tsang, M.: Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011) Tsang, M.: Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011)
22.
Zurück zum Zitat Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016)ADSCrossRef Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016)ADSCrossRef
23.
Zurück zum Zitat Rueda, A., Sedlmeir, F., Collodo, M.C., Vogl, U., Stiller, B., Schunk, G., Strekalov, D.V., Marquardt, C., Fink, J.M., Painter, O., Leuchs, G., Schwefel, H.G.L.: Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597 (2016)ADSCrossRef Rueda, A., Sedlmeir, F., Collodo, M.C., Vogl, U., Stiller, B., Schunk, G., Strekalov, D.V., Marquardt, C., Fink, J.M., Painter, O., Leuchs, G., Schwefel, H.G.L.: Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597 (2016)ADSCrossRef
24.
Zurück zum Zitat Stannigel, K., Rabl, P., Sørensen, A.S., Zoller, P., Lukin, M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)ADSCrossRef Stannigel, K., Rabl, P., Sørensen, A.S., Zoller, P., Lukin, M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)ADSCrossRef
25.
Zurück zum Zitat Taylor, J.M., Sørensen, A.S., Marcus, C.M., Polzik, E.S.: Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011)ADSCrossRef Taylor, J.M., Sørensen, A.S., Marcus, C.M., Polzik, E.S.: Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011)ADSCrossRef
26.
Zurück zum Zitat Barzanjeh, S., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)ADSCrossRef Barzanjeh, S., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)ADSCrossRef
27.
Zurück zum Zitat Tian, L.: Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012)ADSCrossRef Tian, L.: Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012)ADSCrossRef
28.
Zurück zum Zitat Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef
29.
Zurück zum Zitat Clader, B.D.: Quantum networking of microwave photons using optical fibers. Phys. Rev. A 90, 012324 (2014)ADSCrossRef Clader, B.D.: Quantum networking of microwave photons using optical fibers. Phys. Rev. A 90, 012324 (2014)ADSCrossRef
30.
Zurück zum Zitat Yin, Z.-Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)ADSCrossRef Yin, Z.-Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)ADSCrossRef
31.
Zurück zum Zitat Černotík, O., Hammerer, K.: Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016)ADSCrossRef Černotík, O., Hammerer, K.: Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016)ADSCrossRef
32.
Zurück zum Zitat Okada, A., Oguro, F., Noguchi, A., Tabuchi, Y., Yamazaki, R., Usami, K., Nakamura, Y.: Cavity enhancement of anti-Stokes scattering via optomechanical coupling with surface acoustic Waves. Phys. Rev. Appl. 10, 024002 (2018)ADSCrossRef Okada, A., Oguro, F., Noguchi, A., Tabuchi, Y., Yamazaki, R., Usami, K., Nakamura, Y.: Cavity enhancement of anti-Stokes scattering via optomechanical coupling with surface acoustic Waves. Phys. Rev. Appl. 10, 024002 (2018)ADSCrossRef
33.
Zurück zum Zitat Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013)CrossRef Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013)CrossRef
34.
Zurück zum Zitat Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)CrossRef Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)CrossRef
35.
Zurück zum Zitat Bagci, T., Simonsen, A., Schmid, S., Villanueva, L.G., Zeuthen, E., Appel, J., Taylor, J.M., Sørensen, A.S., Usami, K., Schliesser, A., Polzik, E.S.: Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014)ADSCrossRef Bagci, T., Simonsen, A., Schmid, S., Villanueva, L.G., Zeuthen, E., Appel, J., Taylor, J.M., Sørensen, A.S., Usami, K., Schliesser, A., Polzik, E.S.: Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014)ADSCrossRef
36.
Zurück zum Zitat Balram, K.C., Davanço, M.I., Song, J.D., Srinivasan, K.: Coherent coupling between radiofrequency optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346 (2016)ADSCrossRef Balram, K.C., Davanço, M.I., Song, J.D., Srinivasan, K.: Coherent coupling between radiofrequency optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346 (2016)ADSCrossRef
37.
Zurück zum Zitat Bowen, W.P., Milburn, G.J.: Quantum Optomechanics. CRC Press, Taylor and Francis Group, Boca Raton (2016)MATH Bowen, W.P., Milburn, G.J.: Quantum Optomechanics. CRC Press, Taylor and Francis Group, Boca Raton (2016)MATH
38.
Zurück zum Zitat Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRef Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRef
39.
Zurück zum Zitat Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)ADSCrossRef Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)ADSCrossRef
40.
Zurück zum Zitat Jiao, Y.F., Zhang, S.D., Zhang, Y.L., Miranowicz, A., Kuang, L.M., Jing, H.: Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. 125, 143605 (2020)ADSCrossRef Jiao, Y.F., Zhang, S.D., Zhang, Y.L., Miranowicz, A., Kuang, L.M., Jing, H.: Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. 125, 143605 (2020)ADSCrossRef
41.
Zurück zum Zitat Tan, Q.S., Yuan, J.B., Liao, J.Q., Kuang, L.M.: Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate. Opt. Express 28, 22867 (2020)ADSCrossRef Tan, Q.S., Yuan, J.B., Liao, J.Q., Kuang, L.M.: Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate. Opt. Express 28, 22867 (2020)ADSCrossRef
42.
Zurück zum Zitat Zhai, C.L., Huang, R., Jing, H., Kuang, L.M.: Mechanical switch of photon blockade and photon-induced tunneling. Opt. Express 28, 22867 (2020)ADS Zhai, C.L., Huang, R., Jing, H., Kuang, L.M.: Mechanical switch of photon blockade and photon-induced tunneling. Opt. Express 28, 22867 (2020)ADS
43.
Zurück zum Zitat Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)ADSCrossRef Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)ADSCrossRef
44.
Zurück zum Zitat Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADSCrossRef Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADSCrossRef
45.
Zurück zum Zitat Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)ADSCrossRef Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)ADSCrossRef
46.
Zurück zum Zitat Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature (London) 478, 89 (2011)ADSCrossRef Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature (London) 478, 89 (2011)ADSCrossRef
47.
Zurück zum Zitat Brahms, N., Botter, T., Schreppler, S., Brooks, D.W.C., Stamper-Kurn, D.M.: Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)ADSCrossRef Brahms, N., Botter, T., Schreppler, S., Brooks, D.W.C., Stamper-Kurn, D.M.: Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)ADSCrossRef
48.
Zurück zum Zitat Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)ADSCrossRef Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)ADSCrossRef
49.
Zurück zum Zitat Massel, F., Cho, S.U., Pirkkalainen, J.-M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)ADSCrossRef Massel, F., Cho, S.U., Pirkkalainen, J.-M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)ADSCrossRef
50.
Zurück zum Zitat Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)ADSCrossRef Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)ADSCrossRef
51.
Zurück zum Zitat Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179 (2013)CrossRef Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179 (2013)CrossRef
52.
Zurück zum Zitat O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London) 464, 697 (2010) O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London) 464, 697 (2010)
53.
Zurück zum Zitat Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature (London) 471, 204 (2011)ADSCrossRef Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature (London) 471, 204 (2011)ADSCrossRef
54.
Zurück zum Zitat Riviere, R., Deleglise, S., Weis, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011)ADSCrossRef Riviere, R., Deleglise, S., Weis, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011)ADSCrossRef
55.
Zurück zum Zitat Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)ADSCrossRef Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)ADSCrossRef
56.
Zurück zum Zitat Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRef Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRef
57.
Zurück zum Zitat Dong, C., Fiore, V., Kuzyk, M.C., Wang, H.: Optomechanical dark mode. Science 338, 1609 (2012)ADSCrossRef Dong, C., Fiore, V., Kuzyk, M.C., Wang, H.: Optomechanical dark mode. Science 338, 1609 (2012)ADSCrossRef
58.
Zurück zum Zitat Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef
59.
Zurück zum Zitat Zhang, X., Zou, C.-L., Zhu, N., Marquardt, F., Jiang, L., Tang, H.X.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)ADSCrossRef Zhang, X., Zou, C.-L., Zhu, N., Marquardt, F., Jiang, L., Tang, H.X.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)ADSCrossRef
60.
Zurück zum Zitat Wang, Y.-D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)ADSCrossRef Wang, Y.-D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)ADSCrossRef
61.
Zurück zum Zitat Tian, L.: Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. 110, 233602 (2013)ADSCrossRef Tian, L.: Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. 110, 233602 (2013)ADSCrossRef
62.
Zurück zum Zitat Lai, D.G., Wang, X., Qin, W., Hou, B.P., Nori, F., Liao, J.Q.: Tunable optomechanically induced transparency by controlling thed ark-mode effect. Phys. Rev. A 102, 023707 (2020)ADSMathSciNetCrossRef Lai, D.G., Wang, X., Qin, W., Hou, B.P., Nori, F., Liao, J.Q.: Tunable optomechanically induced transparency by controlling thed ark-mode effect. Phys. Rev. A 102, 023707 (2020)ADSMathSciNetCrossRef
63.
Zurück zum Zitat Lake, D.P., Mitchell, M., Sanders, B.C., Barclay, P.E.: Two-colour interferometry and switching through optomechanical dark mode excitation. Nat. Commun. 11, 2208 (2020)ADSCrossRef Lake, D.P., Mitchell, M., Sanders, B.C., Barclay, P.E.: Two-colour interferometry and switching through optomechanical dark mode excitation. Nat. Commun. 11, 2208 (2020)ADSCrossRef
64.
Zurück zum Zitat Kuzyk, M.C., Wang, H.: Controlling multimode optomechanical interactions via interference. Phys. Rev. A 96, 023860 (2017)ADSCrossRef Kuzyk, M.C., Wang, H.: Controlling multimode optomechanical interactions via interference. Phys. Rev. A 96, 023860 (2017)ADSCrossRef
65.
Zurück zum Zitat Sommer, C., Genes, C.: Partial optomechanical refrigeration via multimode cold-damping feedback. Phys. Rev. Lett. 123, 203605 (2019)ADSCrossRef Sommer, C., Genes, C.: Partial optomechanical refrigeration via multimode cold-damping feedback. Phys. Rev. Lett. 123, 203605 (2019)ADSCrossRef
66.
Zurück zum Zitat Ockeloen-Korppi, C.F., Gely, M.F., Damskägg, E., Jenkins, M., Steele, G.A., Sillanpää, M.A.: Sideband cooling of nearly degenerate micromechanical oscillators in a multi-mode optomechanical system. Phys. Rev. A 99, 023826 (2019)ADSCrossRef Ockeloen-Korppi, C.F., Gely, M.F., Damskägg, E., Jenkins, M., Steele, G.A., Sillanpää, M.A.: Sideband cooling of nearly degenerate micromechanical oscillators in a multi-mode optomechanical system. Phys. Rev. A 99, 023826 (2019)ADSCrossRef
67.
Zurück zum Zitat Sen, B., Mandal, S.: Squeezed states in spontaneous Raman and in stimulated Raman processes. J. Mod. Opt. 52, 1789 (2005)ADSCrossRef Sen, B., Mandal, S.: Squeezed states in spontaneous Raman and in stimulated Raman processes. J. Mod. Opt. 52, 1789 (2005)ADSCrossRef
68.
Zurück zum Zitat Sen, B., Giri, S.K., Mandal, S., Raymond Ooi, C.H., Pathak, A.: Intermodal entanglement in Raman processes. Phys. Rev. A 87, 022325 (2013)ADSCrossRef Sen, B., Giri, S.K., Mandal, S., Raymond Ooi, C.H., Pathak, A.: Intermodal entanglement in Raman processes. Phys. Rev. A 87, 022325 (2013)ADSCrossRef
69.
Zurück zum Zitat Giri, S.K., Sen, B., Pathak, A., Jana, P.C.: Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 93, 012340 (2016)ADSCrossRef Giri, S.K., Sen, B., Pathak, A., Jana, P.C.: Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 93, 012340 (2016)ADSCrossRef
70.
Zurück zum Zitat Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRef Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRef
71.
Zurück zum Zitat Barzanjeh, S., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)ADSCrossRef Barzanjeh, S., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)ADSCrossRef
72.
Zurück zum Zitat Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)ADSCrossRef Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)ADSCrossRef
73.
Zurück zum Zitat Jiang, W., Sarabalis, C.J., Dahmani, Y.D., Patel, R.N., Mayor, F.M., McKenna, P.T., Laer, R.V., Safavi-Naeini, A.H.: Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020)ADSCrossRef Jiang, W., Sarabalis, C.J., Dahmani, Y.D., Patel, R.N., Mayor, F.M., McKenna, P.T., Laer, R.V., Safavi-Naeini, A.H.: Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020)ADSCrossRef
74.
Zurück zum Zitat Safavi-Naeini, A.H., Painter, O.: Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011)ADSCrossRef Safavi-Naeini, A.H., Painter, O.: Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011)ADSCrossRef
75.
Zurück zum Zitat Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)ADSCrossRef
76.
Zurück zum Zitat Kuang, L.M., Zhou, L.: Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003)ADSCrossRef Kuang, L.M., Zhou, L.: Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003)ADSCrossRef
78.
Zurück zum Zitat Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRef Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRef
79.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSMATHCrossRef Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSMATHCrossRef
Metadaten
Titel
Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes
verfasst von
Ling-Ying Zhu
Yong Dong
Ji Zhang
Cui-Lu Zhai
Yaxin Zhai
Le-Man Kuang
Publikationsdatum
01.10.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03269-9

Weitere Artikel der Ausgabe 10/2021

Quantum Information Processing 10/2021 Zur Ausgabe

Neuer Inhalt