Skip to main content
Erschienen in: Neural Processing Letters 3/2019

23.07.2018

Robust Extreme Learning Machines with Different Loss Functions

verfasst von: Zhuo Ren, Liming Yang

Erschienen in: Neural Processing Letters | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. However, the traditional ELM is sensitive to noise and outliers due to using traditional least square loss function. In this paper, we present a new mixed loss function from a combination of pinball loss and least square loss. Then three robust ELM frameworks are proposed based on rescaled hinge loss function, pinball loss function and mixed loss function respectively to enhance noise robustness. To train the proposed ELM with rescaled hinge loss, the half-quadratic optimization algorithm is used to handle nonconvexity, and we demonstrate the convergence of the resulting algorithm. Furthermore, the proposed methods are applied to various datasets including classification data and regression data, with different types of noises such as feature noise and target noise. Compared with traditional methods, experiment results on UCI benchmark datasets show that the proposed methods are less sensitive to noises and achieve better performance in classification and regression applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu D, Deng L (2012) Efficient and effective algorithms for training single-hidden-layer neural networks. Pattern Recognit Lett 33(5):554–558MathSciNetCrossRef Yu D, Deng L (2012) Efficient and effective algorithms for training single-hidden-layer neural networks. Pattern Recognit Lett 33(5):554–558MathSciNetCrossRef
2.
Zurück zum Zitat Ding S, Su C, Yu J (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef Ding S, Su C, Yu J (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef
3.
Zurück zum Zitat Luo X, Chang X, Liu H (2014) A Taylor based localization algorithm for wireless sensor network using extreme learning machine. IEICE Trans Inf Syst 97(10):2652–2659CrossRef Luo X, Chang X, Liu H (2014) A Taylor based localization algorithm for wireless sensor network using extreme learning machine. IEICE Trans Inf Syst 97(10):2652–2659CrossRef
4.
Zurück zum Zitat Huang G, Huang GB, Song S et al (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH Huang G, Huang GB, Song S et al (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH
5.
Zurück zum Zitat Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: Computational intelligence and data mining (CIDM ’09) IEEE, pp 389–395 Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: Computational intelligence and data mining (CIDM ’09) IEEE, pp 389–395
6.
Zurück zum Zitat Hu JK, Zhang XG (2012) Extreme learning machine on robust estimation. Appl Res Comput 29(8):2926–2930 Hu JK, Zhang XG (2012) Extreme learning machine on robust estimation. Appl Res Comput 29(8):2926–2930
7.
Zurück zum Zitat Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102(2):31–44CrossRef Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102(2):31–44CrossRef
8.
Zurück zum Zitat Xing HJ, Wang XM (2013) Training extreme learning machine via regularized correntropy criterion. Neural Comput Appl 23(7):1977–1986CrossRef Xing HJ, Wang XM (2013) Training extreme learning machine via regularized correntropy criterion. Neural Comput Appl 23(7):1977–1986CrossRef
9.
Zurück zum Zitat Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527CrossRef Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527CrossRef
10.
Zurück zum Zitat Chen K, Lv Q, Lu Y et al (2017) Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing 230(22):345–358CrossRef Chen K, Lv Q, Lu Y et al (2017) Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing 230(22):345–358CrossRef
11.
Zurück zum Zitat Liu W, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Proces 55(11):5286–5298MathSciNetCrossRefMATH Liu W, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Proces 55(11):5286–5298MathSciNetCrossRefMATH
12.
Zurück zum Zitat Yang L, Ren Z, Wang Y et al (2017) A robust regression framework with laplace kernel-induced loss. Neural Comput 29(11):1–26MathSciNet Yang L, Ren Z, Wang Y et al (2017) A robust regression framework with laplace kernel-induced loss. Neural Comput 29(11):1–26MathSciNet
13.
Zurück zum Zitat Singh A, Pokharel R, Principe J (2014) The C-loss function for pattern classification. Pattern Recognit 47(1):441–453CrossRefMATH Singh A, Pokharel R, Principe J (2014) The C-loss function for pattern classification. Pattern Recognit 47(1):441–453CrossRefMATH
14.
Zurück zum Zitat Xu G, Cao Z, Hu BG et al (2017) Robust support vector machines based on the rescaled hinge loss function. Pattern Recognit 63:139–148CrossRef Xu G, Cao Z, Hu BG et al (2017) Robust support vector machines based on the rescaled hinge loss function. Pattern Recognit 63:139–148CrossRef
15.
16.
Zurück zum Zitat Huang X, Shi L, Suykens JA (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36(5):984–997CrossRef Huang X, Shi L, Suykens JA (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36(5):984–997CrossRef
17.
18.
Zurück zum Zitat Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062CrossRef Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062CrossRef
19.
Zurück zum Zitat Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef
20.
Zurück zum Zitat Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–29CrossRef Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–29CrossRef
21.
Zurück zum Zitat Chen X, Wan ATK, Zhou Y (2015) Efficient quantile regression analysis with missing observations. J Am Stat Assoc 110(510):723–741MathSciNetCrossRefMATH Chen X, Wan ATK, Zhou Y (2015) Efficient quantile regression analysis with missing observations. J Am Stat Assoc 110(510):723–741MathSciNetCrossRefMATH
23.
Zurück zum Zitat Nikolova M, Ng MK (2005) Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J Sci Comput 27(3):937–966MathSciNetCrossRefMATH Nikolova M, Ng MK (2005) Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J Sci Comput 27(3):937–966MathSciNetCrossRefMATH
24.
Zurück zum Zitat He R, Zheng WS, Tan T et al (2014) Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans Pattern Anal Mach Intell 36(2):261–275CrossRef He R, Zheng WS, Tan T et al (2014) Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans Pattern Anal Mach Intell 36(2):261–275CrossRef
25.
Zurück zum Zitat Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New YorkCrossRefMATH Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New YorkCrossRefMATH
28.
Zurück zum Zitat Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):61–874MathSciNet Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):61–874MathSciNet
29.
Zurück zum Zitat Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163CrossRef Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163CrossRef
30.
Zurück zum Zitat Peng XJ (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372CrossRefMATH Peng XJ (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372CrossRefMATH
Metadaten
Titel
Robust Extreme Learning Machines with Different Loss Functions
verfasst von
Zhuo Ren
Liming Yang
Publikationsdatum
23.07.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9890-9

Weitere Artikel der Ausgabe 3/2019

Neural Processing Letters 3/2019 Zur Ausgabe

Neuer Inhalt