Skip to main content
Erschienen in: Neural Processing Letters 3/2019

09.08.2018

Contractive Slab and Spike Convolutional Deep Belief Network

verfasst von: Haibo Wang, Xiaojun Bi

Erschienen in: Neural Processing Letters | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Convolutional Deep Belief Network (CDBN) is typically classified into deep generative model. Although CDBN has demonstrated the powerful capacity of feature extraction in unsupervised learning, there still remain diverse challenges in the robust and high-quality feature extraction. This paper designs an advanced hierarchical generative model in order to tackle with these troubles. First, we modify conventional Convolutional Restricted Boltzmann Machine (CRBM) through inducing Gaussian hidden units subsequently following point-wise multiplication with the original binary spike hidden units for high-order feature extraction of the local patch. We theoretically derive entire inferences of this novel model. Second, we attempt to learn more robust features by minimizing L2 norm of the jacobian of the extracted features producing from the modified model as novel regularization trick. This can introduce a localized space contraction benefit for robust feature extraction in turn. Finally, this paper construct a novel deep generative model, Contractive Slab and Spike Convolutional Deep Belief Network (CssCDBN), based on the modified CRBM, in order to learn deeper and more abstract features. The performances on diverse visual tasks indicate that CssCDBN is a more powerful model achieving impressive results over many currently excellent models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1725–1732. https://doi.org/10.1109/cvpr.2014.223 Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1725–1732. https://​doi.​org/​10.​1109/​cvpr.​2014.​223
3.
Zurück zum Zitat Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. Lect Notes Comput Sci 6791:52–59CrossRef Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. Lect Notes Comput Sci 6791:52–59CrossRef
5.
Zurück zum Zitat Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1-9 Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1-9
6.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 770–778
7.
Zurück zum Zitat Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 2727–2734 Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 2727–2734
8.
Zurück zum Zitat Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the international conference on neural information processing systems, pp 1096–1104 Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the international conference on neural information processing systems, pp 1096–1104
9.
Zurück zum Zitat Schmidt EM, Kim YE (2011) Learning Emotion-based acoustic features with deep belief networks. In: 2011 IEEE workshop on applications of signal processing to audio and acoustics (Waspaa), pp 65–68 Schmidt EM, Kim YE (2011) Learning Emotion-based acoustic features with deep belief networks. In: 2011 IEEE workshop on applications of signal processing to audio and acoustics (Waspaa), pp 65–68
11.
Zurück zum Zitat Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the international conference on neural information processing systems, pp 153–160 Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the international conference on neural information processing systems, pp 153–160
12.
Zurück zum Zitat Krizhevsky A (2009) Learning multiple layers of features from tiny images. Science Department, University of Toronto, Tech, pp 1–60. https://doi.org/10.1.1.222.9220 Krizhevsky A (2009) Learning multiple layers of features from tiny images. Science Department, University of Toronto, Tech, pp 1–60. https://​doi.​org/​10.​1.​1.​222.​9220
13.
Zurück zum Zitat Ranzato M, Krizhevsky A, Hinton GE (2010) Factored 3-way restricted boltzmann machines for modeling natural images. J Mach Learn Res 9:621–628 Ranzato M, Krizhevsky A, Hinton GE (2010) Factored 3-way restricted boltzmann machines for modeling natural images. J Mach Learn Res 9:621–628
14.
Zurück zum Zitat Swersky K, Ranzato M, Buchman D, Marlin BM, Freitas ND (2011) On autoencoders and score matching for energy based models. In: Proceedings of the international conference on machine learning, pp 1201–1208 Swersky K, Ranzato M, Buchman D, Marlin BM, Freitas ND (2011) On autoencoders and score matching for energy based models. In: Proceedings of the international conference on machine learning, pp 1201–1208
15.
Zurück zum Zitat Courville A, Bergstra J, Bengio Y (2011) A spike and slab restricted Boltzmann machine. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 233–241 Courville A, Bergstra J, Bengio Y (2011) A spike and slab restricted Boltzmann machine. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 233–241
16.
Zurück zum Zitat Bengio Y, Courville A, Bergstra JS (2011) Unsupervised models of images by spike-and-slab RBMs. In: Proceedings of the 28th international conference on machine learning, pp 1145–1152 Bengio Y, Courville A, Bergstra JS (2011) Unsupervised models of images by spike-and-slab RBMs. In: Proceedings of the 28th international conference on machine learning, pp 1145–1152
17.
Zurück zum Zitat Rifai S, Vincent P, Muller X, et al (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning, pp 833–840 Rifai S, Vincent P, Muller X, et al (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning, pp 833–840
18.
Zurück zum Zitat Lin M, Chen Q, Yan S (2014) Network in network. In: Proceeding of international conference on learning representations Lin M, Chen Q, Yan S (2014) Network in network. In: Proceeding of international conference on learning representations
19.
Zurück zum Zitat Ranzato MHG (2010) Modeling pixel means and covariances using factorized third-order Boltzmann machines. Proc IEEE Conf Comput Vis Patt Recogn, IEEE 119:2551–2558 Ranzato MHG (2010) Modeling pixel means and covariances using factorized third-order Boltzmann machines. Proc IEEE Conf Comput Vis Patt Recogn, IEEE 119:2551–2558
20.
Zurück zum Zitat Chen D, Lv J, Zhang Y (2017) Graph regularized restricted boltzmann machine. IEEE Trans Neural Netw Learn Syst 99:91–99 Chen D, Lv J, Zhang Y (2017) Graph regularized restricted boltzmann machine. IEEE Trans Neural Netw Learn Syst 99:91–99
23.
Zurück zum Zitat Vincent P, Larochelle H, Bengio Y, et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp 1096–1103 Vincent P, Larochelle H, Bengio Y, et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp 1096–1103
24.
Zurück zum Zitat Bishop C (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef Bishop C (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef
25.
Zurück zum Zitat Bengio Y, Yao L, Alain G, et al (2013) Generalized denoising auto-encoders as generative models. In: Proceedings of the Advances in neural information processing systems, pp 899–907 Bengio Y, Yao L, Alain G, et al (2013) Generalized denoising auto-encoders as generative models. In: Proceedings of the Advances in neural information processing systems, pp 899–907
27.
Zurück zum Zitat Fischer A, Igel C (2012) An Introduction to restricted Boltzmann machines. Iberoamerican congress on pattern recognition. Springer, Berlin, pp 14–36 Fischer A, Igel C (2012) An Introduction to restricted Boltzmann machines. Iberoamerican congress on pattern recognition. Springer, Berlin, pp 14–36
32.
Zurück zum Zitat Goodfellow IJ, Warde-Farley D, Lamblin P, et al (2013) Pylearn2: a machine learning research library. ArXiv preprint arXiv:1308.4214 Goodfellow IJ, Warde-Farley D, Lamblin P, et al (2013) Pylearn2: a machine learning research library. ArXiv preprint arXiv:​1308.​4214
33.
Zurück zum Zitat Bergstra J, Breuleux O, Bastien F, et al (2010) Theano: a CPU and GPU math compiler in Python. In: Proceedings of 9th Python in science conference, pp. 1–7 Bergstra J, Breuleux O, Bastien F, et al (2010) Theano: a CPU and GPU math compiler in Python. In: Proceedings of 9th Python in science conference, pp. 1–7
34.
Zurück zum Zitat Ba JL, Kingma DP (2015) Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations, 2015. pp 1–13 Ba JL, Kingma DP (2015) Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations, 2015. pp 1–13
35.
Zurück zum Zitat Hinton GEOS, Bao K (2005) Learning causally linked Markov random fields. Proc Int Workshop Artif Intell Stat 16:128–135 Hinton GEOS, Bao K (2005) Learning causally linked Markov random fields. Proc Int Workshop Artif Intell Stat 16:128–135
37.
Zurück zum Zitat Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Proceedings of the advances in neural information processing systems, pp 1137–1144 Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Proceedings of the advances in neural information processing systems, pp 1137–1144
39.
Zurück zum Zitat Lee H, Ekandham C, Ng AY (2008) Sparse deep belief net model for visual area V2. In: Proceedings of the advances in neural information processing systems, pp 873–880 Lee H, Ekandham C, Ng AY (2008) Sparse deep belief net model for visual area V2. In: Proceedings of the advances in neural information processing systems, pp 873–880
40.
Zurück zum Zitat Huang KZ, Xu ZL, King I, Lyu MR, Campbell C (2009) Supervised self-taught learning: actively transferring knowledge from unlabeled data. In: IJCNN: 2009 international joint conference on neural networks, vols 1–6, p 481 Huang KZ, Xu ZL, King I, Lyu MR, Campbell C (2009) Supervised self-taught learning: actively transferring knowledge from unlabeled data. In: IJCNN: 2009 international joint conference on neural networks, vols 1–6, p 481
42.
Zurück zum Zitat Sohn K, Jung DY, Lee H, Hero AO (2011) efficient learning of sparse, distributed, convolutional feature representations for object recognition. In: 2011 IEEE international conference on computer vision (ICCV), pp 2643–2650 Sohn K, Jung DY, Lee H, Hero AO (2011) efficient learning of sparse, distributed, convolutional feature representations for object recognition. In: 2011 IEEE international conference on computer vision (ICCV), pp 2643–2650
46.
Zurück zum Zitat Ian Goodfellow DW-F, Mirza Mehdi, Courville Aaron, Bengio Yoshua (2013) Maxout networks. PMLR 28(3):1319–1327 Ian Goodfellow DW-F, Mirza Mehdi, Courville Aaron, Bengio Yoshua (2013) Maxout networks. PMLR 28(3):1319–1327
47.
Zurück zum Zitat Marijn F Stollenga JM, Gomez F, Schmidhuber J (2014) Deep networks with internal selective attention through feedback connections. In: Advances in neural information processing systems, pp 3545–3553 Marijn F Stollenga JM, Gomez F, Schmidhuber J (2014) Deep networks with internal selective attention through feedback connections. In: Advances in neural information processing systems, pp 3545–3553
48.
Zurück zum Zitat Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, pp 562–570 Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, pp 562–570
49.
Zurück zum Zitat van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH
50.
Zurück zum Zitat Larochelle H, Erhen D, Courville A, et al (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning, pp 473–480 Larochelle H, Erhen D, Courville A, et al (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning, pp 473–480
51.
Zurück zum Zitat Nair V, Hinton G (2009) Implicit mixtures of restricted Boltzmann machines. In: Proceedings of the advances in neural information processing systems, pp 1145–1152 Nair V, Hinton G (2009) Implicit mixtures of restricted Boltzmann machines. In: Proceedings of the advances in neural information processing systems, pp 1145–1152
52.
Zurück zum Zitat Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: Proceedings of international conference on machine learning, pp 536–543 Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: Proceedings of international conference on machine learning, pp 536–543
53.
Zurück zum Zitat Kihyuk Sohn GZ, Lee Chansoo, Lee Honglak (2013) Learning and selecting features jointly with point-wise gated Boltzmann machines. Proc Int Conf Mach Learn 28(2):217–225 Kihyuk Sohn GZ, Lee Chansoo, Lee Honglak (2013) Learning and selecting features jointly with point-wise gated Boltzmann machines. Proc Int Conf Mach Learn 28(2):217–225
55.
Zurück zum Zitat Zöhrer M, Pernkopf F (2014) General stochastic networks for classification. In: Proceedings of the advances in neural information processing systems, pp 2015–2023 Zöhrer M, Pernkopf F (2014) General stochastic networks for classification. In: Proceedings of the advances in neural information processing systems, pp 2015–2023
Metadaten
Titel
Contractive Slab and Spike Convolutional Deep Belief Network
verfasst von
Haibo Wang
Xiaojun Bi
Publikationsdatum
09.08.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9897-2

Weitere Artikel der Ausgabe 3/2019

Neural Processing Letters 3/2019 Zur Ausgabe

Neuer Inhalt