Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.08.2018 | Ausgabe 3/2019

Neural Processing Letters 3/2019

Contractive Slab and Spike Convolutional Deep Belief Network

Zeitschrift:
Neural Processing Letters > Ausgabe 3/2019
Autoren:
Haibo Wang, Xiaojun Bi
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11063-018-9897-2) contains supplementary material, which is available to authorized users.

Abstract

Convolutional Deep Belief Network (CDBN) is typically classified into deep generative model. Although CDBN has demonstrated the powerful capacity of feature extraction in unsupervised learning, there still remain diverse challenges in the robust and high-quality feature extraction. This paper designs an advanced hierarchical generative model in order to tackle with these troubles. First, we modify conventional Convolutional Restricted Boltzmann Machine (CRBM) through inducing Gaussian hidden units subsequently following point-wise multiplication with the original binary spike hidden units for high-order feature extraction of the local patch. We theoretically derive entire inferences of this novel model. Second, we attempt to learn more robust features by minimizing L2 norm of the jacobian of the extracted features producing from the modified model as novel regularization trick. This can introduce a localized space contraction benefit for robust feature extraction in turn. Finally, this paper construct a novel deep generative model, Contractive Slab and Spike Convolutional Deep Belief Network (CssCDBN), based on the modified CRBM, in order to learn deeper and more abstract features. The performances on diverse visual tasks indicate that CssCDBN is a more powerful model achieving impressive results over many currently excellent models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2019

Neural Processing Letters 3/2019 Zur Ausgabe