Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

06.07.2021

Role of Texture and Microstructural Developments in the Forming Limit Diagrams of Family of Interstitial Free Steels

verfasst von: Basavaraj H. Vadavadagi, H. V. Bhujle, Rajesh Kisni Khatirkar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forming limit diagrams (FLDs) are widely used in sheet metal industries to assess formability. These are graphical representations of major and minor strains on a 2-D plot separating safe and unsafe regions. Limiting strains were measured by digital image correlation (DIC) technique. In the present work, microstructure evolution and forming behavior of family of interstitial free steels: interstitial free (IF) and interstitial free-high strength (IF-HS) grades have been investigated. Both experimental and finite element (FE) simulated FLDs indicated higher formability for IF steel. Microstructural developments affect forming limits and influence forming limit diagrams. Evolving microstructure during forming was studied by texture developments using x-ray diffraction (XRD) and in grain average misorientation developments using electron backscattered diffraction (EBSD) techniques as a function of strain and strain paths. Estimated microstructural parameters revealed that the enhanced formability of IF steel was due to the presence of strong γ-fiber (ND//<111>) recrystallization texture and corresponding absence of θ-fiber (ND//<100>). On the contrary, IF-HS steel showed the abundant θ-fiber component and hence decreased formability.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in Press Shop, Trans. SAE Paper, 1968, 680093, p 77–92. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in Press Shop, Trans. SAE Paper, 1968, 680093, p 77–92.
2.
Zurück zum Zitat S.P. Keeler, Determination of Forming Limits in Automotive Stampings, Sheet Metal Ind., 1965, 42, p 683–695. S.P. Keeler, Determination of Forming Limits in Automotive Stampings, Sheet Metal Ind., 1965, 42, p 683–695.
3.
Zurück zum Zitat S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched over Rigid Punches, Trans. ASM, 1946, 56, p 30–48. S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched over Rigid Punches, Trans. ASM, 1946, 56, p 30–48.
4.
Zurück zum Zitat J. Gronostajski and A. Dolny, Determination of Forming Limit Curves by Means of Marciniak Punch, Memor. Sci. Rev. Metal., 1980, 4, p 570–578. J. Gronostajski and A. Dolny, Determination of Forming Limit Curves by Means of Marciniak Punch, Memor. Sci. Rev. Metal., 1980, 4, p 570–578.
5.
Zurück zum Zitat K.S. Raghavan, A Simple Technique to Generate in-Plane Forming Limit Curves and Selected Application, Metall. Trans. A, 1995, 26, p 2075–2084.CrossRef K.S. Raghavan, A Simple Technique to Generate in-Plane Forming Limit Curves and Selected Application, Metall. Trans. A, 1995, 26, p 2075–2084.CrossRef
6.
Zurück zum Zitat P. Vacher, A. Haddad and R. Arrieux, Determination of the Forming Limit Diagrams Using Image Analysis by the Correlation Method, CIRP Ann. Manuf. Technol., 1999, 48(1), p 227–230.CrossRef P. Vacher, A. Haddad and R. Arrieux, Determination of the Forming Limit Diagrams Using Image Analysis by the Correlation Method, CIRP Ann. Manuf. Technol., 1999, 48(1), p 227–230.CrossRef
7.
Zurück zum Zitat ISO 12004-2:2008. Metallic Materials—Sheet and Strip—Determination of Forming Limit Curves—Part 2: Determination of Forming Limit Curves in the Laboratory, (2008) ISO 12004-2:2008. Metallic Materials—Sheet and Strip—Determination of Forming Limit Curves—Part 2: Determination of Forming Limit Curves in the Laboratory, (2008)
8.
Zurück zum Zitat Z.H. Lu and D. Lee, Prediction of History-Dependent Forming Limits by Applying Different Hardening Models, Int. J. Mech. Sci., 1987, 29, p 123–137.CrossRef Z.H. Lu and D. Lee, Prediction of History-Dependent Forming Limits by Applying Different Hardening Models, Int. J. Mech. Sci., 1987, 29, p 123–137.CrossRef
9.
Zurück zum Zitat T. Yoshida, T. Kayayama and M. Usuda, Forming-Limit Analysis of Hemispherical-Punch Stretching Using the three-Dimensional Finite-Element Method, J. Mat. Proc. Tech., 1995, 50, p 226–237.CrossRef T. Yoshida, T. Kayayama and M. Usuda, Forming-Limit Analysis of Hemispherical-Punch Stretching Using the three-Dimensional Finite-Element Method, J. Mat. Proc. Tech., 1995, 50, p 226–237.CrossRef
10.
Zurück zum Zitat E. Nakamachi, Sheet-Forming Process Characterization Bystatic-explicit Anisotropic Elastic-Plastic Finite-Element Simulation, J. Mat. Proc. Tech., 1995, 50, p 116–132.CrossRef E. Nakamachi, Sheet-Forming Process Characterization Bystatic-explicit Anisotropic Elastic-Plastic Finite-Element Simulation, J. Mat. Proc. Tech., 1995, 50, p 116–132.CrossRef
11.
Zurück zum Zitat H. Takuda, K. Mori, N. Takakura and K. Yamaguchi, Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798.CrossRef H. Takuda, K. Mori, N. Takakura and K. Yamaguchi, Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798.CrossRef
12.
Zurück zum Zitat R.D. McGinty and D.L. McDowell, Application of Multiscale Crystal Plasticity Models to Forming Limit Diagrams, J. Eng. Mater. Technol., 2004, 126, p 285–291.CrossRef R.D. McGinty and D.L. McDowell, Application of Multiscale Crystal Plasticity Models to Forming Limit Diagrams, J. Eng. Mater. Technol., 2004, 126, p 285–291.CrossRef
13.
Zurück zum Zitat H.B. Campos, M.C. Butuc, J.J. Grácio, J.E. Rocha and J.M.F. Duarte, Theoretical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60.CrossRef H.B. Campos, M.C. Butuc, J.J. Grácio, J.E. Rocha and J.M.F. Duarte, Theoretical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60.CrossRef
14.
Zurück zum Zitat H. Aretz, Numerical Analysis of Diffuse and Localized Necking in Orthotropic Sheet Metals, Int. J. Plast., 2007, 23, p 798–840.CrossRef H. Aretz, Numerical Analysis of Diffuse and Localized Necking in Orthotropic Sheet Metals, Int. J. Plast., 2007, 23, p 798–840.CrossRef
15.
Zurück zum Zitat M. Ganjiani and A. Assempour, An Improved Analytical Approach for Determination of Forming Limit Diagrams Considering the Effects of Yield Functions, J. Mater. Process. Technol., 2007, 182, p 598–607.CrossRef M. Ganjiani and A. Assempour, An Improved Analytical Approach for Determination of Forming Limit Diagrams Considering the Effects of Yield Functions, J. Mater. Process. Technol., 2007, 182, p 598–607.CrossRef
16.
Zurück zum Zitat J.W. Signorelli, M.A. Bertinetti and P.A. Turner, Predictions of Forming Limit Diagrams Using a Rate-Dependent Polycrystal Selfconsistent Plasticity Model, Int. J. Plast., 2009, 25, p 1–25.CrossRef J.W. Signorelli, M.A. Bertinetti and P.A. Turner, Predictions of Forming Limit Diagrams Using a Rate-Dependent Polycrystal Selfconsistent Plasticity Model, Int. J. Plast., 2009, 25, p 1–25.CrossRef
17.
Zurück zum Zitat P. Hora, L. Tong, J. Reissner, A Prediction Method of Ductile Sheet Metal Failure in FE Simulation, Numisheet, Dearborn, Michigan, USA, (1996) 252–256 P. Hora, L. Tong, J. Reissner, A Prediction Method of Ductile Sheet Metal Failure in FE Simulation, Numisheet, Dearborn, Michigan, USA, (1996) 252–256
18.
Zurück zum Zitat K. Mattiasson, M. Sigvant, M. Larson, Methods for Forming Limit Prediction in Ductile Metal Sheets, IDDRG, Porto, Portugal, (2006) 1–9 K. Mattiasson, M. Sigvant, M. Larson, Methods for Forming Limit Prediction in Ductile Metal Sheets, IDDRG, Porto, Portugal, (2006) 1–9
20.
Zurück zum Zitat G. Franz, F. Abed-Meraim, T. Ben Zineb, X. Lemoine and M. Berveiller, Strain Localization Analysis for Single Crystals and Polycrystals: Towards Microstructure-Ductility Linkage, Int. J. Plast., 2013, 48(1), p 1–33.CrossRef G. Franz, F. Abed-Meraim, T. Ben Zineb, X. Lemoine and M. Berveiller, Strain Localization Analysis for Single Crystals and Polycrystals: Towards Microstructure-Ductility Linkage, Int. J. Plast., 2013, 48(1), p 1–33.CrossRef
21.
Zurück zum Zitat G. Franz, T. Abed-Meraim, T. Balan and G. Altmeyer, Investigation and Comparative Analysis of Plastic Instability Criteria: Application to Forming Limit Diagrams, Int J Adv Manuf Technol, 2014, 71, p 1247–1262.CrossRef G. Franz, T. Abed-Meraim, T. Balan and G. Altmeyer, Investigation and Comparative Analysis of Plastic Instability Criteria: Application to Forming Limit Diagrams, Int J Adv Manuf Technol, 2014, 71, p 1247–1262.CrossRef
22.
Zurück zum Zitat S.E. Clift, P. Hartly, C.E.N. Sturgess and G.W. Rowe, Fracture Prediction in Plastic Deformation Processes, Int J Mech Sci, 1990, 32, p 1–17.CrossRef S.E. Clift, P. Hartly, C.E.N. Sturgess and G.W. Rowe, Fracture Prediction in Plastic Deformation Processes, Int J Mech Sci, 1990, 32, p 1–17.CrossRef
23.
Zurück zum Zitat F. Ozturk and D. Lee, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., 2004, 147(3), p 397–404.CrossRef F. Ozturk and D. Lee, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., 2004, 147(3), p 397–404.CrossRef
24.
Zurück zum Zitat H. Takuda, K. Mori and N. Hatta, The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals, J. Mater. Process. Tech., 1999, 95, p 116–121.CrossRef H. Takuda, K. Mori and N. Hatta, The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals, J. Mater. Process. Tech., 1999, 95, p 116–121.CrossRef
25.
Zurück zum Zitat V. M. Nandedkar, Formability Studies on Deep Drawing Quality Steel, PhD thesis, IITBomaby, Mumbai (2000). V. M. Nandedkar, Formability Studies on Deep Drawing Quality Steel, PhD thesis, IITBomaby, Mumbai (2000).
26.
Zurück zum Zitat W.M. Sing and K.P. Rao, Influence of Material Properties on Sheet Metal Formability Limits, J Mater Process Technol, 1993, 37, p 37–51.CrossRef W.M. Sing and K.P. Rao, Influence of Material Properties on Sheet Metal Formability Limits, J Mater Process Technol, 1993, 37, p 37–51.CrossRef
27.
Zurück zum Zitat S.K. Yerra, H.V. Vankudre, P.P. Date and I. Samajdar, Effect of Strain Path on the Formability of a Low Carbon Steel - on the Textural and Microtextural developments, J. Eng. Mater. Tech., 2004, 126(1), p 53–61.CrossRef S.K. Yerra, H.V. Vankudre, P.P. Date and I. Samajdar, Effect of Strain Path on the Formability of a Low Carbon Steel - on the Textural and Microtextural developments, J. Eng. Mater. Tech., 2004, 126(1), p 53–61.CrossRef
28.
Zurück zum Zitat S. Raveendra, A.K. Kanjarla, H. Paranjape, S.K. Mishra, S. Mishra, L. Delannay, I. Samajdar and P. Van Houtte, Strain Mode Dependence of Deformation Texture Developments: Microstructural Origin, Met. Trans. A, 2011, 42A, p 2113–2124.CrossRef S. Raveendra, A.K. Kanjarla, H. Paranjape, S.K. Mishra, S. Mishra, L. Delannay, I. Samajdar and P. Van Houtte, Strain Mode Dependence of Deformation Texture Developments: Microstructural Origin, Met. Trans. A, 2011, 42A, p 2113–2124.CrossRef
29.
Zurück zum Zitat L.S. Toth, J. Hirsch and P. Van Houtte, On the Role of Texture Development in the Forming Limits of Sheet Metals, Int. J. Mech. Sci., 1996, 38, p 1117–1126.CrossRef L.S. Toth, J. Hirsch and P. Van Houtte, On the Role of Texture Development in the Forming Limits of Sheet Metals, Int. J. Mech. Sci., 1996, 38, p 1117–1126.CrossRef
30.
Zurück zum Zitat S.K. Mishra, G.D. Sharvari, P. Pant, K. Narasimhan and I. Samajdar, Improved Predictability of Forming Limit Curves Through Microstructural Inputs, Intl. J. Metal. Form., 2009, 2, p 59–67.CrossRef S.K. Mishra, G.D. Sharvari, P. Pant, K. Narasimhan and I. Samajdar, Improved Predictability of Forming Limit Curves Through Microstructural Inputs, Intl. J. Metal. Form., 2009, 2, p 59–67.CrossRef
32.
Zurück zum Zitat R. Hill, A Theory of Yielding and Plastic Flow of Anisotropic metals, Proc. Roy. Soc. London A, 1948, 193, p 281–297.CrossRef R. Hill, A Theory of Yielding and Plastic Flow of Anisotropic metals, Proc. Roy. Soc. London A, 1948, 193, p 281–297.CrossRef
33.
Zurück zum Zitat M.M. Nowell and S.I. Wright, Orientation Effects on Indexing of Electron Backscattered Diffraction Patterns, Ultramicroscopy, 2005, 103, p 41–58. M.M. Nowell and S.I. Wright, Orientation Effects on Indexing of Electron Backscattered Diffraction Patterns, Ultramicroscopy, 2005, 103, p 41–58.
34.
Zurück zum Zitat H.J. Bunge, Texture Analysis in MaterialsScience, Butterworths, London, 1982. H.J. Bunge, Texture Analysis in MaterialsScience, Butterworths, London, 1982.
35.
Zurück zum Zitat R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R. Petrov, P. Pant and I. Samajdar, Strain Localizations in Ultra Low Carbon Steel: Exploring the Role of Dislocations, ISIJ Intl, 2011, 51(5), p 849–856.CrossRef R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R. Petrov, P. Pant and I. Samajdar, Strain Localizations in Ultra Low Carbon Steel: Exploring the Role of Dislocations, ISIJ Intl, 2011, 51(5), p 849–856.CrossRef
36.
Zurück zum Zitat B. Verlinden, J. Driver, I. Samajdar, R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, ISBN–978-0-08-044497-0, 2007; Pergamon Materials Series—series ed. R.W. Cahn, Elsevier, Amsterdam B. Verlinden, J. Driver, I. Samajdar, R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, ISBN–978-0-08-044497-0, 2007; Pergamon Materials Series—series ed. R.W. Cahn, Elsevier, Amsterdam
37.
Zurück zum Zitat R.K. Ray, J.J. Jonas and R.E. Hook, Cold Rolling and Annealing Textures in low Carbon and Extra Low Carbon Steels, Int Mater Rev, 1994, 39(4), p 129–171.CrossRef R.K. Ray, J.J. Jonas and R.E. Hook, Cold Rolling and Annealing Textures in low Carbon and Extra Low Carbon Steels, Int Mater Rev, 1994, 39(4), p 129–171.CrossRef
38.
Zurück zum Zitat V.M. Nandedkar, I. Samajdar and K. Narashiman, Development of Grain Interior Strain Localizations during Plane Strain Deformation of a Deep Drawing Quality Steel, ISIJ Int, 2001, 41(12), p 1517–1521.CrossRef V.M. Nandedkar, I. Samajdar and K. Narashiman, Development of Grain Interior Strain Localizations during Plane Strain Deformation of a Deep Drawing Quality Steel, ISIJ Int, 2001, 41(12), p 1517–1521.CrossRef
39.
Zurück zum Zitat P. Van-Houtte, MTM-FHM Software System, version 2, MTM, KULeuven, Belgium (1995) P. Van-Houtte, MTM-FHM Software System, version 2, MTM, KULeuven, Belgium (1995)
40.
Zurück zum Zitat P. Van Houtte, S. Li, M. Seefeldt and L. Delannay, Deformation Texture Prediction: from the Taylor Modelto the Advanced Lamel Model, Int. J. Plasticity, 2005, 21, p 589–624.CrossRef P. Van Houtte, S. Li, M. Seefeldt and L. Delannay, Deformation Texture Prediction: from the Taylor Modelto the Advanced Lamel Model, Int. J. Plasticity, 2005, 21, p 589–624.CrossRef
41.
Zurück zum Zitat L. Delannay, P.J. Jacques and S.R. Kalidindi, Finite Element Modeling of Crystal Plasticity with Grains Shaped as Truncated Octahedrons, Int. J. Plasticity, 2006, 22, p 1879–1898.CrossRef L. Delannay, P.J. Jacques and S.R. Kalidindi, Finite Element Modeling of Crystal Plasticity with Grains Shaped as Truncated Octahedrons, Int. J. Plasticity, 2006, 22, p 1879–1898.CrossRef
42.
Zurück zum Zitat T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997. T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997.
43.
Zurück zum Zitat W. Wang, R.H. Wagoner and X.J. Wang, Measurement of Friction Undersheet Forming Conditions, Metal. Mat. Trans. A, 1996, 27A, p 3971–3981.CrossRef W. Wang, R.H. Wagoner and X.J. Wang, Measurement of Friction Undersheet Forming Conditions, Metal. Mat. Trans. A, 1996, 27A, p 3971–3981.CrossRef
44.
Zurück zum Zitat D. Wilkund, B.G. Rosen and L. Gunnarsson, Frictional Mechanismsin Mixed Lubricated Regime in Steel Sheet Metal Forming, Wear, 2008, 264, p 474–479. D. Wilkund, B.G. Rosen and L. Gunnarsson, Frictional Mechanismsin Mixed Lubricated Regime in Steel Sheet Metal Forming, Wear, 2008, 264, p 474–479.
45.
Zurück zum Zitat T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast, 2004, 20, p 1463–1486.CrossRef T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast, 2004, 20, p 1463–1486.CrossRef
46.
Zurück zum Zitat M. Hatherly, F.J. Humphreys, Recrystallization and Related Annealing Phenomena, Elsevier (2012). M. Hatherly, F.J. Humphreys, Recrystallization and Related Annealing Phenomena, Elsevier (2012).
47.
Zurück zum Zitat W.B. Hutchinson, Development and Control of Annealing Textures in Low-Carbon Steels, Int. Metals Reviews, 1984, 29, p 25–42.CrossRef W.B. Hutchinson, Development and Control of Annealing Textures in Low-Carbon Steels, Int. Metals Reviews, 1984, 29, p 25–42.CrossRef
48.
Zurück zum Zitat R.K.K. KhatirkarSunil, Comparison of Recrystallization Textures in Interstitial Free and Interstitial Free High Strength Steels, Mater. Chem. Phys., 2011, 127, p 128–136.CrossRef R.K.K. KhatirkarSunil, Comparison of Recrystallization Textures in Interstitial Free and Interstitial Free High Strength Steels, Mater. Chem. Phys., 2011, 127, p 128–136.CrossRef
49.
Zurück zum Zitat Y. Hosoya, T. Urabe, K. Tahara, S. Kaneto, H. Ando and N.K.K. Technol, Rev., 1995, 72, p 1. Y. Hosoya, T. Urabe, K. Tahara, S. Kaneto, H. Ando and N.K.K. Technol, Rev., 1995, 72, p 1.
Metadaten
Titel
Role of Texture and Microstructural Developments in the Forming Limit Diagrams of Family of Interstitial Free Steels
verfasst von
Basavaraj H. Vadavadagi
H. V. Bhujle
Rajesh Kisni Khatirkar
Publikationsdatum
06.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05992-x

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.