Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2023

18.01.2023 | TECHNICAL ARTICLE

Rotary Bend Fatigue of Nitinol to One Billion Cycles

verfasst von: J. D. Weaver, G. M. Sena, K. I. Aycock, A. Roiko, W. M. Falk, S. Sivan, B. T. Berg

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nitinol implants, especially those used in cardiovascular applications, are typically expected to remain durable beyond 108 cycles, yet literature on ultra-high cycle fatigue of nitinol remains relatively scarce and its mechanisms not well understood. To investigate nitinol fatigue behavior in this domain, we conducted a multifaceted evaluation of nitinol wire subjected to rotary bend fatigue that included detailed material characterization and finite element analysis as well as post hoc analyses of the resulting fatigue life data. Below approximately 105 cycles, cyclic phase transformation, as predicted by computational simulations, was associated with fatigue failure. Between 105 and 108 cycles, fractures were relatively infrequent. Beyond 108 cycles, fatigue fractures were relatively common depending on the load level and other factors including the size of non-metallic inclusions present and the number of loading cycles. Given observations of both low cycle and ultra-high cycle fatigue fractures, a two-failure model may be more appropriate than the standard Coffin-Manson equation for characterizing nitinol fatigue life beyond 108 cycles. This work provides the first documented fatigue study of medical grade nitinol to 109 cycles, and the observations and insights described will be of value as design engineers seek to improve durability for future nitinol implants.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
\(\Phi \left(x\right)=P\left(Z\le x\right)=\frac{1}{\sqrt{2\pi }}\underset{-\infty }{\overset{x}{\int }}\mathrm{exp}\left\{-\frac{{u}^{2}}{2}\right\}\mathrm{d}u.\)
 
2
Due to numerical convergence issues, the parameter \({\varepsilon }_{50}\) was “hard” set to 0.56% strain rather than identified using maximum likelihood techniques. This choice for \({\varepsilon }_{50}\) was based on inspection of the observed cycles to fracture data. Samples run at this nominal strain level of 0.56% saw roughly equal proportions fracture before and after 10 million cycles. As a result of setting the parameter, the fit of the \({\varepsilon }_{50}\) parameter may not be optimal, and the confidence bounds on \({\varepsilon }_{50}\) could not be calculated. Work to improve the numerical algorithm to treat \({\varepsilon }_{50}\) as a true model parameter is ongoing.
 
Literatur
1.
Zurück zum Zitat Gbur JL, Lewandowski JJ (2016) Fatigue and fracture of wires and cables for biomedical applications. Int Mater Rev 61(4):231–314CrossRef Gbur JL, Lewandowski JJ (2016) Fatigue and fracture of wires and cables for biomedical applications. Int Mater Rev 61(4):231–314CrossRef
2.
Zurück zum Zitat Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: The state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: The state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef
3.
Zurück zum Zitat Pelton, A., Berg, B., Saffari, P., Stebner, A., and Bucsek, A., Pre-strain and Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Medical Devices. Shape Memory and Superelasticity, 2022: p. 1–21. Pelton, A., Berg, B., Saffari, P., Stebner, A., and Bucsek, A., Pre-strain and Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Medical Devices. Shape Memory and Superelasticity, 2022: p. 1–21.
4.
Zurück zum Zitat Pelton, A., Pelton, S., Jörn, T., Ulmer, J., Niedermaier, D., Plaskonka, K., LePage, W., Saffari, P., and Mitchell, M. The quest for fatigue-resistant nitinol for medical implants. in Fourth symposium on fatigue and fracture of metallic medical materials and devices. 2019. ASTM International. Pelton, A., Pelton, S., Jörn, T., Ulmer, J., Niedermaier, D., Plaskonka, K., LePage, W., Saffari, P., and Mitchell, M. The quest for fatigue-resistant nitinol for medical implants. in Fourth symposium on fatigue and fracture of metallic medical materials and devices. 2019. ASTM International.
5.
Zurück zum Zitat Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36CrossRef Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36CrossRef
6.
Zurück zum Zitat Fitzka M, Rennhofer H, Catoor D, Reiterer M, Lichtenegger H, Checchia S, di Michiel M, Irrasch D, Gruenewald T, Mayer H (2020) High Speed In Situ Synchrotron Observation of Cyclic Deformation and Phase Transformation of Superelastic Nitinol at Ultrasonic Frequency. Exp Mech 60(3):317–328CrossRef Fitzka M, Rennhofer H, Catoor D, Reiterer M, Lichtenegger H, Checchia S, di Michiel M, Irrasch D, Gruenewald T, Mayer H (2020) High Speed In Situ Synchrotron Observation of Cyclic Deformation and Phase Transformation of Superelastic Nitinol at Ultrasonic Frequency. Exp Mech 60(3):317–328CrossRef
7.
Zurück zum Zitat Adler P, Frei R, Kimiecik M, Briant P, James B, Liu C (2018) Effects of tube processing on the fatigue life of nitinol. Shape Memory and Superelasticity 4(1):197–217CrossRef Adler P, Frei R, Kimiecik M, Briant P, James B, Liu C (2018) Effects of tube processing on the fatigue life of nitinol. Shape Memory and Superelasticity 4(1):197–217CrossRef
8.
Zurück zum Zitat Bonsignore C, Shamini A, Duerig T (2019) The Role of Parent Phase Compliance on the Fatigue Lifetime of Ni–Ti. Shape Memory and Superelasticity 5(4):407–414CrossRef Bonsignore C, Shamini A, Duerig T (2019) The Role of Parent Phase Compliance on the Fatigue Lifetime of Ni–Ti. Shape Memory and Superelasticity 5(4):407–414CrossRef
9.
Zurück zum Zitat Pelton AR, Fino-Decker J, Vien L, Bonsignore C, Saffari P, Launey M, Mitchell MR (2013) Rotary-bending fatigue characteristics of medical-grade Nitinol wire. J Mech Behav Biomed Mater 27:19–32CrossRef Pelton AR, Fino-Decker J, Vien L, Bonsignore C, Saffari P, Launey M, Mitchell MR (2013) Rotary-bending fatigue characteristics of medical-grade Nitinol wire. J Mech Behav Biomed Mater 27:19–32CrossRef
10.
Zurück zum Zitat Robertson SW, Launey M, Shelley O, Ong I, Vien L, Senthilnathan K, Saffari P, Schlegel S, Pelton AR (2015) A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J Mech Behav Biomed Mater 51:119–131CrossRef Robertson SW, Launey M, Shelley O, Ong I, Vien L, Senthilnathan K, Saffari P, Schlegel S, Pelton AR (2015) A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J Mech Behav Biomed Mater 51:119–131CrossRef
11.
Zurück zum Zitat Tobushi H, Hachisuka T, Yamada S, Lin PH (1997) Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mech Mater 26(1):35–42CrossRef Tobushi H, Hachisuka T, Yamada S, Lin PH (1997) Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mech Mater 26(1):35–42CrossRef
12.
Zurück zum Zitat Wagner M, Sawaguchi T, Kaustrater G, Hoffken D, Eggeler G (2004) Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 378(1–2):105–109CrossRef Wagner M, Sawaguchi T, Kaustrater G, Hoffken D, Eggeler G (2004) Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 378(1–2):105–109CrossRef
13.
Zurück zum Zitat Cheng, C., Handbook of vascular motion. 2019. Cheng, C., Handbook of vascular motion. 2019.
14.
Zurück zum Zitat Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2015) High compressive pre-strains reduce the bending fatigue life of nitinol wire. J Mech Behav Biomed Mater 44:96–108CrossRef Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2015) High compressive pre-strains reduce the bending fatigue life of nitinol wire. J Mech Behav Biomed Mater 44:96–108CrossRef
15.
Zurück zum Zitat Patel, M.M. and Gordon, R.F. An investigation of diverse surface finishes on fatigue properties of superelastic Nitinol wire. in SMST-2006 Proceedings of the International Conference on Shape Memory and Superelastic Technologies. 2006. Citeseer. Patel, M.M. and Gordon, R.F. An investigation of diverse surface finishes on fatigue properties of superelastic Nitinol wire. in SMST-2006 Proceedings of the International Conference on Shape Memory and Superelastic Technologies. 2006. Citeseer.
16.
Zurück zum Zitat Schaffer JE, Plumley DL (2009) Fatigue performance of nitinol round wire with varying cold work reductions. J Mater Eng Perform 18(5):563–568CrossRef Schaffer JE, Plumley DL (2009) Fatigue performance of nitinol round wire with varying cold work reductions. J Mater Eng Perform 18(5):563–568CrossRef
17.
Zurück zum Zitat Urbano M, Cadelli A, Sczerzenie F, Luccarelli P, Beretta S, Coda A (2015) Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications. Shape Memory and Superelasticity 1(2):240–251CrossRef Urbano M, Cadelli A, Sczerzenie F, Luccarelli P, Beretta S, Coda A (2015) Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications. Shape Memory and Superelasticity 1(2):240–251CrossRef
18.
Zurück zum Zitat Weaver J, Sena G, Falk W, Sivan S (2022) On the influence of test speed and environment in the fatigue life of small diameter nitinol and stainless steel wire. Int J Fatigue 155:106619CrossRef Weaver J, Sena G, Falk W, Sivan S (2022) On the influence of test speed and environment in the fatigue life of small diameter nitinol and stainless steel wire. Int J Fatigue 155:106619CrossRef
19.
Zurück zum Zitat Cao H, Wu MH, Zhou F, McMeeking RM, Ritchie RO (2020) The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices. J Mech Phys Solids 143:104057CrossRef Cao H, Wu MH, Zhou F, McMeeking RM, Ritchie RO (2020) The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices. J Mech Phys Solids 143:104057CrossRef
20.
Zurück zum Zitat Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmuller R, Wohlschlogel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmuller R, Wohlschlogel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef
21.
Zurück zum Zitat Bathias C (1999) There is no infinite fatigue life in metallic materials. Fatigue & fracture of engineering materials & structures (Print) 22(7):559–565CrossRef Bathias C (1999) There is no infinite fatigue life in metallic materials. Fatigue & fracture of engineering materials & structures (Print) 22(7):559–565CrossRef
22.
Zurück zum Zitat Murakami, Y., Takada, M., and Toriyama, T., Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel. International Journal of Fatigue, 1998. 20(9): p. 661–667. Murakami, Y., Takada, M., and Toriyama, T., Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel. International Journal of Fatigue, 1998. 20(9): p. 661–667.
23.
Zurück zum Zitat Murakami, Y., Metal fatigue: effects of small defects and nonmetallic inclusions. 2019: Academic Press. Murakami, Y., Metal fatigue: effects of small defects and nonmetallic inclusions. 2019: Academic Press.
24.
Zurück zum Zitat ASTM F2063–12, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International. ASTM F2063–12, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International.
25.
Zurück zum Zitat ASTM F2082–16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International. ASTM F2082–16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International.
26.
Zurück zum Zitat ASTM F2516–18, Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, ASTM International. ASTM F2516–18, Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, ASTM International.
27.
Zurück zum Zitat ASTM F2004–17, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM International. ASTM F2004–17, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM International.
28.
Zurück zum Zitat ASTM E384–17, Standard Test Method for Microindentation Hardness of Materials, ASTM International. ASTM E384–17, Standard Test Method for Microindentation Hardness of Materials, ASTM International.
29.
Zurück zum Zitat ASTM E3–11, Standard Guide for Preparation of Metallographic Specimens, ASTM International. ASTM E3–11, Standard Guide for Preparation of Metallographic Specimens, ASTM International.
30.
Zurück zum Zitat ASTM E407–07, Standard Practice for Microetching Metals and Alloys, ASTM International. ASTM E407–07, Standard Practice for Microetching Metals and Alloys, ASTM International.
31.
Zurück zum Zitat ASTM E2283–08, Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features, ASTM International. ASTM E2283–08, Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features, ASTM International.
32.
Zurück zum Zitat Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRef Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRef
33.
Zurück zum Zitat Aycock KI, Rebelo N, Craven BA (2020) Method of manufactured solutions code verification of elastostatic solid mechanics problems in a commercial finite element solver. Comput Struct 229:106175CrossRef Aycock KI, Rebelo N, Craven BA (2020) Method of manufactured solutions code verification of elastostatic solid mechanics problems in a commercial finite element solver. Comput Struct 229:106175CrossRef
34.
Zurück zum Zitat Rebelo N, Perry M (2000) Finite element analysis for the design of nitinol medical devices. Minim Invasive Ther Allied Technol 9(2):75–80CrossRef Rebelo N, Perry M (2000) Finite element analysis for the design of nitinol medical devices. Minim Invasive Ther Allied Technol 9(2):75–80CrossRef
35.
Zurück zum Zitat Auricchio F, Taylor RL (1997) Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput Methods Appl Mech Eng 143(1–2):175–194CrossRef Auricchio F, Taylor RL (1997) Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput Methods Appl Mech Eng 143(1–2):175–194CrossRef
36.
Zurück zum Zitat Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V., Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 2011. 12: p. 2825–2830. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V., Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 2011. 12: p. 2825–2830.
37.
Zurück zum Zitat Marrey, R., Baillargeon, B., Dreher, M.L., Weaver, J.D., Nagaraja, S., Rebelo, N., and Gong, X.-Y., Validating Fatigue safety factor calculation methods for cardiovascular stents. Journal of biomechanical engineering, 2018. 140(6). Marrey, R., Baillargeon, B., Dreher, M.L., Weaver, J.D., Nagaraja, S., Rebelo, N., and Gong, X.-Y., Validating Fatigue safety factor calculation methods for cardiovascular stents. Journal of biomechanical engineering, 2018. 140(6).
38.
Zurück zum Zitat Craven BA, Aycock KI, Manning KB (2018) Steady flow in a patient-averaged inferior vena cava—Part II: Computational fluid dynamics verification and validation. Cardiovasc Eng Technol 9(4):654–673CrossRef Craven BA, Aycock KI, Manning KB (2018) Steady flow in a patient-averaged inferior vena cava—Part II: Computational fluid dynamics verification and validation. Cardiovasc Eng Technol 9(4):654–673CrossRef
39.
Zurück zum Zitat Roache PJ (1994) Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J Fluids Eng 116(3):405–413CrossRef Roache PJ (1994) Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J Fluids Eng 116(3):405–413CrossRef
40.
Zurück zum Zitat Guler, I., Aycock, K., and Rebelo, N. , Two Calculation Verification Metrics used in the Medical Device Industry: Revisiting the Limitations of Fractional Change. The Journal of Verification, Validation, and Uncertainty Quantification (JVVUQ), 2022 (Accepted). Guler, I., Aycock, K., and Rebelo, N. , Two Calculation Verification Metrics used in the Medical Device Industry: Revisiting the Limitations of Fractional Change. The Journal of Verification, Validation, and Uncertainty Quantification (JVVUQ), 2022 (Accepted).
41.
Zurück zum Zitat Pelton A, Huang G, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng, A 532:130–138CrossRef Pelton A, Huang G, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng, A 532:130–138CrossRef
42.
Zurück zum Zitat Castillo, E. and Fernández-Canteli, A., A unified statistical methodology for modeling fatigue damage. 2009: Springer Science & Business Media. Castillo, E. and Fernández-Canteli, A., A unified statistical methodology for modeling fatigue damage. 2009: Springer Science & Business Media.
43.
Zurück zum Zitat Meeker WQ, E.L., Pascual FG, Hong Y, Falk WM, Ananthasayanam B, Liu P, Modern Statistical Models and Methods for Estimating Fatigue-Life and Fatigue-Strength Distributions from Experimental Data. (in preparation). Meeker WQ, E.L., Pascual FG, Hong Y, Falk WM, Ananthasayanam B, Liu P, Modern Statistical Models and Methods for Estimating Fatigue-Life and Fatigue-Strength Distributions from Experimental Data. (in preparation).
44.
Zurück zum Zitat Falk, W. A Statistically Rigorous Fatigue Strength Analysis Approach Applied to Medical Devices. in Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices. 2019. ASTM International. Falk, W. A Statistically Rigorous Fatigue Strength Analysis Approach Applied to Medical Devices. in Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices. 2019. ASTM International.
45.
Zurück zum Zitat Sakai T, Lian B, Takeda M, Shiozawa K, Oguma N, Ochi Y, Nakajima M, Nakamura T (2010) Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime. Int J Fatigue 32(3):497–504CrossRef Sakai T, Lian B, Takeda M, Shiozawa K, Oguma N, Ochi Y, Nakajima M, Nakamura T (2010) Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime. Int J Fatigue 32(3):497–504CrossRef
46.
Zurück zum Zitat Chandran KR, Chang P, Cashman G (2010) Competing failure modes and complex S-N curves in fatigue of structural materials. Int J Fatigue 32(3):482–491CrossRef Chandran KR, Chang P, Cashman G (2010) Competing failure modes and complex S-N curves in fatigue of structural materials. Int J Fatigue 32(3):482–491CrossRef
47.
Zurück zum Zitat Chan V, Meeker WQ (1999) A failure-time model for infant-mortality and wearout failure modes. IEEE Trans Reliab 48(4):377–387CrossRef Chan V, Meeker WQ (1999) A failure-time model for infant-mortality and wearout failure modes. IEEE Trans Reliab 48(4):377–387CrossRef
48.
Zurück zum Zitat Paolino D, Tridello A, Chiandussi G, Rossetto M (2015) Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S-N fatigue curves. Theoret Appl Fract Mech 80:31–39CrossRef Paolino D, Tridello A, Chiandussi G, Rossetto M (2015) Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S-N fatigue curves. Theoret Appl Fract Mech 80:31–39CrossRef
49.
Zurück zum Zitat Murakami Y, Beretta S (1999) Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes 2(2):123–147CrossRef Murakami Y, Beretta S (1999) Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes 2(2):123–147CrossRef
50.
Zurück zum Zitat Roiko A, Murakami Y (2012) A design approach for components in ultralong fatigue life with step loading. Int J Fatigue 41:140–149CrossRef Roiko A, Murakami Y (2012) A design approach for components in ultralong fatigue life with step loading. Int J Fatigue 41:140–149CrossRef
51.
Zurück zum Zitat Yamashita Y, Murakami Y (2016) Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel. Int J Fatigue 93:406–414CrossRef Yamashita Y, Murakami Y (2016) Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel. Int J Fatigue 93:406–414CrossRef
52.
Zurück zum Zitat Murakami, Y., Nomoto, T., Ueda, T., and Murakami, Y., On the mechanism of fatigue failure in the superlong life regime (N> 107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue & Fracture of Engineering Materials & Structures, 2000. 23(11): p. 893–902. Murakami, Y., Nomoto, T., Ueda, T., and Murakami, Y., On the mechanism of fatigue failure in the superlong life regime (N> 107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue & Fracture of Engineering Materials & Structures, 2000. 23(11): p. 893–902.
53.
Zurück zum Zitat ASTM E674–12, Standard Specification for Industrial Perforated Plate and Screens (Round Opening Series), ASTM International. ASTM E674–12, Standard Specification for Industrial Perforated Plate and Screens (Round Opening Series), ASTM International.
54.
Zurück zum Zitat McKelvey A, Ritchie R (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall and Mater Trans A 32(3):731–743CrossRef McKelvey A, Ritchie R (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall and Mater Trans A 32(3):731–743CrossRef
55.
Zurück zum Zitat Robertson S, Ritchie R (2007) In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRef Robertson S, Ritchie R (2007) In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRef
56.
Zurück zum Zitat Schijve, J., Fatigue of Structures and Materials. 2001: Springer Dordrecht. 520. Schijve, J., Fatigue of Structures and Materials. 2001: Springer Dordrecht. 520.
57.
Zurück zum Zitat Racek J, Stora M, Šittner P, Heller L, Kopeček J, Petrenec M (2015) Monitoring tensile fatigue of superelastic NiTi wire in liquids by electrochemical potential. Shape Memory and Superelasticity 1(2):204–230CrossRef Racek J, Stora M, Šittner P, Heller L, Kopeček J, Petrenec M (2015) Monitoring tensile fatigue of superelastic NiTi wire in liquids by electrochemical potential. Shape Memory and Superelasticity 1(2):204–230CrossRef
58.
Zurück zum Zitat Sun, F., Jordan, L., Albin, V.r., Lair, V., Ringuedé, A., and Prima, F.d.r., On the high sensitivity of corrosion resistance of NiTi stents with respect to inclusions: an experimental evidence. ACS omega, 2020. 5(6): p. 3073–3079. Sun, F., Jordan, L., Albin, V.r., Lair, V., Ringuedé, A., and Prima, F.d.r., On the high sensitivity of corrosion resistance of NiTi stents with respect to inclusions: an experimental evidence. ACS omega, 2020. 5(6): p. 3073–3079.
59.
Zurück zum Zitat ASTM E2948–16A, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International. ASTM E2948–16A, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International.
60.
Zurück zum Zitat Pelton A (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4):613–617CrossRef Pelton A (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4):613–617CrossRef
61.
Zurück zum Zitat Aycock KI, Weaver JD, Paranjape HM, Senthilnathan K, Bonsignore C, Craven BA (2021) Full-field microscale strain measurements of a nitinol medical device using digital image correlation. J Mech Behav Biomed Mater 114:104221CrossRef Aycock KI, Weaver JD, Paranjape HM, Senthilnathan K, Bonsignore C, Craven BA (2021) Full-field microscale strain measurements of a nitinol medical device using digital image correlation. J Mech Behav Biomed Mater 114:104221CrossRef
62.
Zurück zum Zitat Miyazaki, S., Mizukoshi, K., Ueki, T., Sakuma, T., and Liu, Y., Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Materials Science and Engineering: A, 1999. 273: p. 658–663. Miyazaki, S., Mizukoshi, K., Ueki, T., Sakuma, T., and Liu, Y., Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Materials Science and Engineering: A, 1999. 273: p. 658–663.
63.
Zurück zum Zitat ASTM F3211–17, Standard Guide for Fatigue-to-Fracture (FtF) Methodology for Cardiovascular Medical Devices, ASTM International. ASTM F3211–17, Standard Guide for Fatigue-to-Fracture (FtF) Methodology for Cardiovascular Medical Devices, ASTM International.
Metadaten
Titel
Rotary Bend Fatigue of Nitinol to One Billion Cycles
verfasst von
J. D. Weaver
G. M. Sena
K. I. Aycock
A. Roiko
W. M. Falk
S. Sivan
B. T. Berg
Publikationsdatum
18.01.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2023
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00409-7

Weitere Artikel der Ausgabe 1/2023

Shape Memory and Superelasticity 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.