Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2023

24.03.2023 | TECHNICAL ARTICLE

Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design

verfasst von: Donald J. Erb, Hunter A. Rauch, Kendall P. Knight, Hang Z. Yu

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The shape memory and superelastic effects are based on mechanically or thermally induced martensitic transformation. In bulk monolithic shape memory materials, these effects are characterized by a driving force threshold, such as a critical stress or a critical temperature, above which the transformation is completed within a relatively narrow window of stress or temperature. In this viewpoint article, we discuss the tuning of macroscopic martensitic transformation characteristics via mesostructure and microstructure design: with heterogeneous driving force and low nucleation barrier in meso-/micro-structured shape memory materials, especially shape memory ceramics, local transformation events can occur sequentially rather than simultaneously. This can lead to a globally continuous transformation mode without well-defined critical stress or temperature. Based on the insights from mechanics modeling and experimental evidence, we illustrate this effect in granular packings, metal matrix composites, and cellular architectures, and discuss how it may unlock new possibilities for applications involving actuation and energy dissipation.
Literatur
15.
Zurück zum Zitat Ashby MF, Chapter 11—Designing Hybrid Materials, Materials Selection in Mechanical Design (4th Edition), M.F. Ashby, (Ed.), Butterworth-Heinemann, 2011, p 299–340 Ashby MF, Chapter 11—Designing Hybrid Materials, Materials Selection in Mechanical Design (4th Edition), M.F. Ashby, (Ed.), Butterworth-Heinemann, 2011, p 299–340
27.
Zurück zum Zitat Du Z, Zeng XM, Liu Q, Schuh CA, Gan CL (2016) Superelasticity in micro-scale shape memory ceramic particles. Acta Mater 123:255–263CrossRef Du Z, Zeng XM, Liu Q, Schuh CA, Gan CL (2016) Superelasticity in micro-scale shape memory ceramic particles. Acta Mater 123:255–263CrossRef
38.
Zurück zum Zitat COMSOL Structural Mechanics Module User’s Guide, 2020 COMSOL Structural Mechanics Module User’s Guide, 2020
39.
Zurück zum Zitat Shape Memory Alloys: Modeling and Engineering Applications, D.C. Lagoudas, (Ed.), Springer, 2008 Shape Memory Alloys: Modeling and Engineering Applications, D.C. Lagoudas, (Ed.), Springer, 2008
48.
Zurück zum Zitat Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater 76(2014):186–197CrossRef Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater 76(2014):186–197CrossRef
Metadaten
Titel
Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design
verfasst von
Donald J. Erb
Hunter A. Rauch
Kendall P. Knight
Hang Z. Yu
Publikationsdatum
24.03.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2023
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00430-4

Weitere Artikel der Ausgabe 1/2023

Shape Memory and Superelasticity 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.