Skip to main content
Erschienen in: Wireless Networks 5/2021

24.05.2021 | Original Paper

Routing constraints in the device-to-device communication for beyond IoT 5G networks: a review

verfasst von: S. Malathy, P. Jayarajan, M. H. D. Nour Hindia, Valmik Tilwari, Kaharudin Dimyati, Kamarul Ariffin Noordin, I. S. Amiri

Erschienen in: Wireless Networks | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Routing is fundamental in any wireless network for path selection, which provides the most effective way that legitimizes the data to be transmitted from a source to a destination device. In gigantic network demand nowadays, routing is pertinent to ensure fast and reliable data transfer. Ineffective routing may cause route flapping and degrade the overall Quality of Service (QoS). Meanwhile, Device-to-Device communications (D2D) is a technology that allows the devices to be connected without or partial involvement of the conventional cellular network. With these natures of qualities, D2D communication provides a reliable propitious medium that caters for the needs of many different telecommunications scenarios. The interconnectivity of multiple devices creates the Internet of Things (IoT), which will be an essential insistent in future technologies. With the dynamic nature of D2D technology, the routing approach act as a principal architecture that essential to be implemented in every niche D2D aspect. If wrong routing decisions are made in D2D communication, the QoS performance would be worse than the conventional cellular network. This paper present the state of the art of fundamentals, recent progress, current challenges, future directions, and potential routing applications for D2D and Beyond IoT 5G Networks. This review will also act as a guide and reference for future researchers and scientists to explore and integrate the routing technique in D2D communication and Beyond IoT 5G Networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Li, S., Da Xu, L., & Zhao, S. (2018). 5G internet of things: A survey. Journal of Industrial Information Integration, 10, 1–9CrossRef Li, S., Da Xu, L., & Zhao, S. (2018). 5G internet of things: A survey. Journal of Industrial Information Integration, 10, 1–9CrossRef
7.
Zurück zum Zitat Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6, 3619–3647CrossRef Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6, 3619–3647CrossRef
9.
Zurück zum Zitat Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655CrossRef Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655CrossRef
10.
Zurück zum Zitat Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular technology magazine, 9(3), 39–46CrossRef Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular technology magazine, 9(3), 39–46CrossRef
12.
Zurück zum Zitat Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys & Tutorials, 18(3), 1656–1686CrossRef Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys & Tutorials, 18(3), 1656–1686CrossRef
13.
Zurück zum Zitat Yu, R., Ding, J., Huang, X., Zhou, M.-T., Gjessing, S., & Zhang, Y. (2016). Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach. IEEE Transactions on Vehicular Technology, 65(10), 7844–7856CrossRef Yu, R., Ding, J., Huang, X., Zhou, M.-T., Gjessing, S., & Zhang, Y. (2016). Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach. IEEE Transactions on Vehicular Technology, 65(10), 7844–7856CrossRef
14.
Zurück zum Zitat Ferdouse, L., Ejaz, W., Raahemifar, K., Anpalagan, A., & Markandaier, M. (2017). Interference and throughput aware resource allocation for multi-class D2D in 5G networks. Iet Communications, 11(8), 1241–1250CrossRef Ferdouse, L., Ejaz, W., Raahemifar, K., Anpalagan, A., & Markandaier, M. (2017). Interference and throughput aware resource allocation for multi-class D2D in 5G networks. Iet Communications, 11(8), 1241–1250CrossRef
15.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79CrossRef Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79CrossRef
16.
Zurück zum Zitat Hindia, M. H. D. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113(2), 1241–1262CrossRef Hindia, M. H. D. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113(2), 1241–1262CrossRef
17.
Zurück zum Zitat Manap, S., Dimyati, K., Hindia, M. N., Talip, M. S. A., & Tafazolli, R. (2020). Survey of radio resource management in 5G heterogeneous networks. IEEE Access, 8, 131202–131223CrossRef Manap, S., Dimyati, K., Hindia, M. N., Talip, M. S. A., & Tafazolli, R. (2020). Survey of radio resource management in 5G heterogeneous networks. IEEE Access, 8, 131202–131223CrossRef
18.
Zurück zum Zitat Qamar, F., Hindia, M. H. D. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643CrossRef Qamar, F., Hindia, M. H. D. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643CrossRef
19.
Zurück zum Zitat Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137CrossRef Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137CrossRef
20.
Zurück zum Zitat Lee, J., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42CrossRef Lee, J., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42CrossRef
21.
Zurück zum Zitat Tilwari, V., & Kushwah, A. S. (2013). Performance analysis of Wi-Max 802.16 e physical layer using digital modulation techniques and code rates. International Journal of Engineering Research and Applications (IJERA), Volume, 3, 1449–1454 Tilwari, V., & Kushwah, A. S. (2013). Performance analysis of Wi-Max 802.16 e physical layer using digital modulation techniques and code rates. International Journal of Engineering Research and Applications (IJERA), Volume, 3, 1449–1454
22.
Zurück zum Zitat Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49CrossRef Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49CrossRef
25.
Zurück zum Zitat Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230. https://doi.org/10.1109/TAP.2017.2734243CrossRef Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230. https://​doi.​org/​10.​1109/​TAP.​2017.​2734243CrossRef
26.
Zurück zum Zitat Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75CrossRef Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75CrossRef
27.
Zurück zum Zitat Bani-Bakr, A., et al. (2020). Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model. Electronics, 9(12), 2175CrossRef Bani-Bakr, A., et al. (2020). Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model. Electronics, 9(12), 2175CrossRef
34.
Zurück zum Zitat Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT express, 4(4), 203–208CrossRef Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT express, 4(4), 203–208CrossRef
35.
Zurück zum Zitat Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49CrossRef Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49CrossRef
41.
Zurück zum Zitat Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29CrossRef Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29CrossRef
42.
Zurück zum Zitat Ahmad, M., Azam, M., Naeem, M., Iqbal, M., Anpalagan, A., & Haneef, M. (2017). Resource management in D2D communication: An optimization perspective. Journal of Network and Computer Applications, 93, 51–75CrossRef Ahmad, M., Azam, M., Naeem, M., Iqbal, M., Anpalagan, A., & Haneef, M. (2017). Resource management in D2D communication: An optimization perspective. Journal of Network and Computer Applications, 93, 51–75CrossRef
43.
Zurück zum Zitat Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, 96, 39–61CrossRef Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, 96, 39–61CrossRef
44.
Zurück zum Zitat Ali, A., Shah, G. A., Farooq, M. O., & Ghani, U. (2017). Technologies and challenges in developing Machine-to-Machine applications: A survey. Journal of Network and Computer Applications, 83, 124–139CrossRef Ali, A., Shah, G. A., Farooq, M. O., & Ghani, U. (2017). Technologies and challenges in developing Machine-to-Machine applications: A survey. Journal of Network and Computer Applications, 83, 124–139CrossRef
46.
Zurück zum Zitat Cheon, H.-R., & Kim, J.-H. (2019). Social-aware mobile data offloading algorithm through small cell backhaul network: Direct and indirect user influence perspectives. Computer Networks, 165, 106951CrossRef Cheon, H.-R., & Kim, J.-H. (2019). Social-aware mobile data offloading algorithm through small cell backhaul network: Direct and indirect user influence perspectives. Computer Networks, 165, 106951CrossRef
47.
Zurück zum Zitat Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks, 77, 42–53CrossRef Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks, 77, 42–53CrossRef
48.
Zurück zum Zitat Cheng, R.-S., Huang, C.-M., & Pan, S.-Y. (2018). WiFi offloading using the device-to-device (D2D) communication paradigm based on the Software Defined Network (SDN) architecture. Journal of Network and Computer Applications, 112, 18–28CrossRef Cheng, R.-S., Huang, C.-M., & Pan, S.-Y. (2018). WiFi offloading using the device-to-device (D2D) communication paradigm based on the Software Defined Network (SDN) architecture. Journal of Network and Computer Applications, 112, 18–28CrossRef
61.
Zurück zum Zitat Liu, X., Li, Z., Yang, P., & Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Networks, 58, 255–268CrossRef Liu, X., Li, Z., Yang, P., & Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Networks, 58, 255–268CrossRef
62.
Zurück zum Zitat Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62CrossRef Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62CrossRef
63.
Zurück zum Zitat Wenbin, Y., Yin, C., Ming, Z., & Dongbin, W. (2017). QoS-oriented packet scheduling scheme for opportunistic networks. The Journal of China Universities of Posts and Telecommunications, 24(3), 51–57CrossRef Wenbin, Y., Yin, C., Ming, Z., & Dongbin, W. (2017). QoS-oriented packet scheduling scheme for opportunistic networks. The Journal of China Universities of Posts and Telecommunications, 24(3), 51–57CrossRef
64.
Zurück zum Zitat Xu, Y., Liu, J., Shen, Y., Jiang, X., & Shiratori, N. (2017). Physical layer security-aware routing and performance tradeoffs in ad hoc networks. Computer Networks, 123, 77–87CrossRef Xu, Y., Liu, J., Shen, Y., Jiang, X., & Shiratori, N. (2017). Physical layer security-aware routing and performance tradeoffs in ad hoc networks. Computer Networks, 123, 77–87CrossRef
65.
Zurück zum Zitat Kazeminia, M., Mehrjoo, M., & Tomasin, S. (2019). Delay-aware spectrum sharing solutions for mixed cellular and D2D links. Computer Communications, 139, 58–66CrossRef Kazeminia, M., Mehrjoo, M., & Tomasin, S. (2019). Delay-aware spectrum sharing solutions for mixed cellular and D2D links. Computer Communications, 139, 58–66CrossRef
69.
Zurück zum Zitat de Mello, M. O. M. C., Borges, V. C. M., Pinto, L. L., & Cardoso, K. V. (2016). Improving load balancing, path length, and stability in low-cost wireless backhauls. Ad Hoc Networks, 48, 16–28CrossRef de Mello, M. O. M. C., Borges, V. C. M., Pinto, L. L., & Cardoso, K. V. (2016). Improving load balancing, path length, and stability in low-cost wireless backhauls. Ad Hoc Networks, 48, 16–28CrossRef
74.
Zurück zum Zitat AlQahtani, S., & Alotaibi, A. (2019). A route stability-based multipath QoS routing protocol in cognitive radio ad hoc networks. Wireless Networks, 25(5), 2931–2951CrossRef AlQahtani, S., & Alotaibi, A. (2019). A route stability-based multipath QoS routing protocol in cognitive radio ad hoc networks. Wireless Networks, 25(5), 2931–2951CrossRef
75.
Zurück zum Zitat Al-Kharasani, N. M., Zukarnain, Z. A., Subramaniam, S. K., & Hanapi, Z. M. (2020). An adaptive relay selection scheme for enhancing network stability in VANETs. IEEE Access, 8, 128757–128765CrossRef Al-Kharasani, N. M., Zukarnain, Z. A., Subramaniam, S. K., & Hanapi, Z. M. (2020). An adaptive relay selection scheme for enhancing network stability in VANETs. IEEE Access, 8, 128757–128765CrossRef
76.
Zurück zum Zitat Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay probing for millimeter wave multi-hop D2D networks. IEEE Access, 8, 30560–30574CrossRef Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay probing for millimeter wave multi-hop D2D networks. IEEE Access, 8, 30560–30574CrossRef
77.
Zurück zum Zitat Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 102275CrossRef Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 102275CrossRef
79.
Zurück zum Zitat Lin, C.-S., & Sou, S.-I. (2019). QoS-aware dynamic bandwidth reallocation with deadline assurance for multipath data offloading. Computer Networks, 153, 103–112CrossRef Lin, C.-S., & Sou, S.-I. (2019). QoS-aware dynamic bandwidth reallocation with deadline assurance for multipath data offloading. Computer Networks, 153, 103–112CrossRef
80.
Zurück zum Zitat Kılıç, G., & Girici, T. (2019). Joint channel and power allocation for device-to-device underlay. Ad Hoc Networks, 83, 158–167CrossRef Kılıç, G., & Girici, T. (2019). Joint channel and power allocation for device-to-device underlay. Ad Hoc Networks, 83, 158–167CrossRef
82.
Zurück zum Zitat Yang, Z.-Y., & Kuo, Y.-W. (2017). Efficient resource allocation algorithm for overlay D2D communication. Computer Networks, 124, 61–71CrossRef Yang, Z.-Y., & Kuo, Y.-W. (2017). Efficient resource allocation algorithm for overlay D2D communication. Computer Networks, 124, 61–71CrossRef
83.
Zurück zum Zitat Esmat, H. H., Elmesalawy, M. M., & Ibrahim, I. I. (2018). Uplink resource allocation and power control for D2D communications underlaying multi-cell mobile networks. AEU-International Journal of Electronics and Communications, 93, 163–171 Esmat, H. H., Elmesalawy, M. M., & Ibrahim, I. I. (2018). Uplink resource allocation and power control for D2D communications underlaying multi-cell mobile networks. AEU-International Journal of Electronics and Communications, 93, 163–171
84.
Zurück zum Zitat Lin, Z., Huang, L., Zhao, Y., Du, X., & Guizani, M. (2017). P2P-based resource allocation with coalitional game for D2D networks. Pervasive and Mobile Computing, 42, 487–497CrossRef Lin, Z., Huang, L., Zhao, Y., Du, X., & Guizani, M. (2017). P2P-based resource allocation with coalitional game for D2D networks. Pervasive and Mobile Computing, 42, 487–497CrossRef
85.
Zurück zum Zitat Gong, W., Li, G., & Li, B. (2018). System utility based resource allocation for D2D multicast communication in software-defined cellular networks. AEU-International Journal of Electronics and Communications, 96, 138–143 Gong, W., Li, G., & Li, B. (2018). System utility based resource allocation for D2D multicast communication in software-defined cellular networks. AEU-International Journal of Electronics and Communications, 96, 138–143
86.
Zurück zum Zitat Ali, M., Qaisar, S., Naeem, M., Mumtaz, S., & Rodrigues, J. J. P. C. (2017). Combinatorial resource allocation in D2D assisted heterogeneous relay networks. Future Generation Computer Systems, 107(2020), 956–964 Ali, M., Qaisar, S., Naeem, M., Mumtaz, S., & Rodrigues, J. J. P. C. (2017). Combinatorial resource allocation in D2D assisted heterogeneous relay networks. Future Generation Computer Systems, 107(2020), 956–964
87.
Zurück zum Zitat Bakhsh, Z. M., Moghaddam, J. Z., & Ardebilipour, M. (2019). An interference management approach for CR-assisted cooperative D2D communication. AEU-International Journal of Electronics and Communications, 115, 153026 Bakhsh, Z. M., Moghaddam, J. Z., & Ardebilipour, M. (2019). An interference management approach for CR-assisted cooperative D2D communication. AEU-International Journal of Electronics and Communications, 115, 153026
88.
Zurück zum Zitat Najeh, S. (2020). Joint mode selection and power control for D2D underlaid cellular networks. Physical Communication, 38, 100917CrossRef Najeh, S. (2020). Joint mode selection and power control for D2D underlaid cellular networks. Physical Communication, 38, 100917CrossRef
89.
Zurück zum Zitat Amodu, O. A., Othman, M., Noordin, N. K., & Ahmad, I. (2019). Transmission capacity analysis of relay-assisted D2D cellular networks with M2M coexistence. Computer Networks, 164, 106887CrossRef Amodu, O. A., Othman, M., Noordin, N. K., & Ahmad, I. (2019). Transmission capacity analysis of relay-assisted D2D cellular networks with M2M coexistence. Computer Networks, 164, 106887CrossRef
90.
Zurück zum Zitat Wang, D.-L., Sun, Q.-Y., Li, Y.-Y., & Liu, X.-R. (2019). Optimal energy routing design in energy internet with multiple energy routing centers using artificial neural network-based reinforcement learning method. Applied Sciences, 9(3), 520CrossRef Wang, D.-L., Sun, Q.-Y., Li, Y.-Y., & Liu, X.-R. (2019). Optimal energy routing design in energy internet with multiple energy routing centers using artificial neural network-based reinforcement learning method. Applied Sciences, 9(3), 520CrossRef
93.
Zurück zum Zitat Abolhasan, M., Abdollahi, M., Ni, W., Jamalipour, A., Shariati, N., & Lipman, J. (2018). A routing framework for offloading traffic from cellular networks to SDN-based multi-hop device-to-device networks. IEEE Transactions on Network and Service Management, 15(4), 1516–1531. https://doi.org/10.1109/TNSM.2018.2875696CrossRef Abolhasan, M., Abdollahi, M., Ni, W., Jamalipour, A., Shariati, N., & Lipman, J. (2018). A routing framework for offloading traffic from cellular networks to SDN-based multi-hop device-to-device networks. IEEE Transactions on Network and Service Management, 15(4), 1516–1531. https://​doi.​org/​10.​1109/​TNSM.​2018.​2875696CrossRef
94.
Zurück zum Zitat Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112, 1–23CrossRef Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112, 1–23CrossRef
95.
Zurück zum Zitat Tilwari, V., Dimyati, K., Hindia, M. H. D., Mohmed Noor Izam, T. F. B. T., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Mohmed Noor Izam, T. F. B. T., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438CrossRef
96.
Zurück zum Zitat Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582CrossRef
97.
Zurück zum Zitat Malathy, S., et al. (2020). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks, 26, 1–18CrossRef Malathy, S., et al. (2020). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks, 26, 1–18CrossRef
98.
Zurück zum Zitat Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384CrossRef Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384CrossRef
99.
Zurück zum Zitat Amiri, I. S. et al. (2019). DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, pp. 1–22. Amiri, I. S. et al. (2019). DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, pp. 1–22.
100.
Zurück zum Zitat Razzaq, M., & Shin, S. (2019). Fuzzy-logic dijkstra-based energy-efficient algorithm for data transmission in WSNs. Sensors, 19(5), 1040CrossRef Razzaq, M., & Shin, S. (2019). Fuzzy-logic dijkstra-based energy-efficient algorithm for data transmission in WSNs. Sensors, 19(5), 1040CrossRef
101.
Zurück zum Zitat Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks, 94, 101936CrossRef Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks, 94, 101936CrossRef
102.
Zurück zum Zitat Hamdi, M., & Zaied, M. (2019). Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Applied Soft Computing, 83, 105605CrossRef Hamdi, M., & Zaied, M. (2019). Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Applied Soft Computing, 83, 105605CrossRef
103.
Zurück zum Zitat Pawar, P., & Trivedi, A. (2019). Interference-aware channel assignment and power allocation for device-to-device communication underlaying cellular network. AEU-International Journal of Electronics and Communications, 112, 152928 Pawar, P., & Trivedi, A. (2019). Interference-aware channel assignment and power allocation for device-to-device communication underlaying cellular network. AEU-International Journal of Electronics and Communications, 112, 152928
104.
Zurück zum Zitat Vallet, J., Brun, O., & Prabhu, B. (2016). A game-theoretic algorithm for non-linear single-path routing problems. Electronic Notes in Discrete Mathematics, 52, 77–84MathSciNetMATHCrossRef Vallet, J., Brun, O., & Prabhu, B. (2016). A game-theoretic algorithm for non-linear single-path routing problems. Electronic Notes in Discrete Mathematics, 52, 77–84MathSciNetMATHCrossRef
105.
Zurück zum Zitat Simha, R., & Narahari, B. (1992). Single path routing with delay considerations. Computer Networks and ISDN Systems, 24(5), 405–419MATHCrossRef Simha, R., & Narahari, B. (1992). Single path routing with delay considerations. Computer Networks and ISDN Systems, 24(5), 405–419MATHCrossRef
106.
Zurück zum Zitat Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60CrossRef Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60CrossRef
107.
Zurück zum Zitat Macit, M., Gungor, V. C., & Tuna, G. (2014). Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad hoc networks, 19, 132–141CrossRef Macit, M., Gungor, V. C., & Tuna, G. (2014). Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad hoc networks, 19, 132–141CrossRef
108.
Zurück zum Zitat Al-Baghdadi, A., Lian, X., & Cheng, E. (2020). Efficient path routing over road networks in the presence of ad-hoc obstacles. Information Systems, 88, 101453CrossRef Al-Baghdadi, A., Lian, X., & Cheng, E. (2020). Efficient path routing over road networks in the presence of ad-hoc obstacles. Information Systems, 88, 101453CrossRef
118.
Zurück zum Zitat Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in Wireless Sensor Networks. Computers & Electrical Engineering, 70, 21–36CrossRef Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in Wireless Sensor Networks. Computers & Electrical Engineering, 70, 21–36CrossRef
119.
Zurück zum Zitat Mohamed, R. E., Ghanem, W. R., Khalil, A. T., Elhoseny, M., Sajjad, M., & Mohamed, M. A. (2018). Energy efficient collaborative proactive routing protocol for wireless sensor network. Computer Networks, 142, 154–167CrossRef Mohamed, R. E., Ghanem, W. R., Khalil, A. T., Elhoseny, M., Sajjad, M., & Mohamed, M. A. (2018). Energy efficient collaborative proactive routing protocol for wireless sensor network. Computer Networks, 142, 154–167CrossRef
120.
Zurück zum Zitat Angelelli, E., Morandi, V., & Speranza, M. G. (2018). Congestion avoiding heuristic path generation for the proactive route guidance. Computers & Operations Research, 99, 234–248MathSciNetMATHCrossRef Angelelli, E., Morandi, V., & Speranza, M. G. (2018). Congestion avoiding heuristic path generation for the proactive route guidance. Computers & Operations Research, 99, 234–248MathSciNetMATHCrossRef
124.
Zurück zum Zitat Muchtar, F., Abdullah, A. H., Hassan, S., Khader, A. T., & Zamli, K. Z. (2019). Energy conservation of content routing through wireless broadcast control in NDN based MANET: A review. Journal of Network and Computer Applications, 131, 109–132CrossRef Muchtar, F., Abdullah, A. H., Hassan, S., Khader, A. T., & Zamli, K. Z. (2019). Energy conservation of content routing through wireless broadcast control in NDN based MANET: A review. Journal of Network and Computer Applications, 131, 109–132CrossRef
125.
Zurück zum Zitat Chithaluru, P., Tiwari, R., & Kumar, K. (2019). AREOR–Adaptive ranking based energy efficient opportunistic routing scheme in Wireless Sensor Network. Computer Networks, 162, 106863CrossRef Chithaluru, P., Tiwari, R., & Kumar, K. (2019). AREOR–Adaptive ranking based energy efficient opportunistic routing scheme in Wireless Sensor Network. Computer Networks, 162, 106863CrossRef
126.
Zurück zum Zitat Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766CrossRef Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766CrossRef
127.
Zurück zum Zitat Al-Dhief, F. T., Sabri, N., Fouad, S., Latiff, N. M. A., & Albader, M. A. A. (2017). A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. Journal of King Saud University-Computer and Information Sciences, 31(2019), 135–146 Al-Dhief, F. T., Sabri, N., Fouad, S., Latiff, N. M. A., & Albader, M. A. A. (2017). A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. Journal of King Saud University-Computer and Information Sciences, 31(2019), 135–146
131.
Zurück zum Zitat Govindasamy, J., & Punniakody, S. (2018). A comparative study of reactive, proactive and hybrid routing protocol in wireless sensor network under wormhole attack. Journal of Electrical Systems and Information Technology, 5(3), 735–744CrossRef Govindasamy, J., & Punniakody, S. (2018). A comparative study of reactive, proactive and hybrid routing protocol in wireless sensor network under wormhole attack. Journal of Electrical Systems and Information Technology, 5(3), 735–744CrossRef
132.
Zurück zum Zitat Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31CrossRef Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31CrossRef
133.
Zurück zum Zitat Muchtar, F., Abdullah, A. H., Hassan, S., & Masud, F. (2018). Energy conservation strategies in Host Centric Networking based MANET: A review. Journal of Network and Computer Applications, 111, 77–98CrossRef Muchtar, F., Abdullah, A. H., Hassan, S., & Masud, F. (2018). Energy conservation strategies in Host Centric Networking based MANET: A review. Journal of Network and Computer Applications, 111, 77–98CrossRef
134.
Zurück zum Zitat Al Mojamed, M., & Kolberg, M. (2016). Structured Peer-to-Peer overlay deployment on MANET: A survey. Computer Networks, 96, 29–47CrossRef Al Mojamed, M., & Kolberg, M. (2016). Structured Peer-to-Peer overlay deployment on MANET: A survey. Computer Networks, 96, 29–47CrossRef
135.
Zurück zum Zitat Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: challenges and directions. IEEE communications Magazine, 40(5), 20–22CrossRef Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: challenges and directions. IEEE communications Magazine, 40(5), 20–22CrossRef
136.
Zurück zum Zitat Malik, S., & Sahu, P. K. (2019). A comparative study on routing protocols for VANETs. Heliyon, 5(8), e02340CrossRef Malik, S., & Sahu, P. K. (2019). A comparative study on routing protocols for VANETs. Heliyon, 5(8), e02340CrossRef
137.
Zurück zum Zitat Ma, Z., Li, B., Yan, Z., & Yang, M. (2020). QoS-Oriented joint optimization of resource allocation and concurrent scheduling in 5G millimeter-wave network. Computer Networks, 166, 106979CrossRef Ma, Z., Li, B., Yan, Z., & Yang, M. (2020). QoS-Oriented joint optimization of resource allocation and concurrent scheduling in 5G millimeter-wave network. Computer Networks, 166, 106979CrossRef
138.
Zurück zum Zitat Liu, X., Yang, B., Jiang, X., Ma, L., & Shen, S. (2020). On social-aware data uploading study of D2D-enabled cellular networks. Computer Networks, 166, 106955CrossRef Liu, X., Yang, B., Jiang, X., Ma, L., & Shen, S. (2020). On social-aware data uploading study of D2D-enabled cellular networks. Computer Networks, 166, 106955CrossRef
139.
Zurück zum Zitat Yang, B., Wu, Z., Shen, Y., & Jiang, X. (2019). packet delivery ratio and energy consumption in multicast delay tolerant MANETs with power control. Computer Networks, 161, 150–161CrossRef Yang, B., Wu, Z., Shen, Y., & Jiang, X. (2019). packet delivery ratio and energy consumption in multicast delay tolerant MANETs with power control. Computer Networks, 161, 150–161CrossRef
140.
Zurück zum Zitat Lin, Z., & Wang, P. (2019). A review of data sets of short-range wireless networks. Computer Communications, 147, 138–158CrossRef Lin, Z., & Wang, P. (2019). A review of data sets of short-range wireless networks. Computer Communications, 147, 138–158CrossRef
141.
Zurück zum Zitat Mei, H., Lu, H., & Peng, L. (2019). Data offloading in cache-enabled cross-haul networks. Computer Communications, 142, 1–8CrossRef Mei, H., Lu, H., & Peng, L. (2019). Data offloading in cache-enabled cross-haul networks. Computer Communications, 142, 1–8CrossRef
142.
Zurück zum Zitat Wang, Y., Yu, Z., Huang, J., & Choi, C. (2019). A novel energy-efficient neighbor discovery procedure in a wireless self-organization network. Information Sciences, 476, 429–438CrossRef Wang, Y., Yu, Z., Huang, J., & Choi, C. (2019). A novel energy-efficient neighbor discovery procedure in a wireless self-organization network. Information Sciences, 476, 429–438CrossRef
143.
Zurück zum Zitat Zhao, Z., Xu, K., Hui, G., & Hu, L. (2018). An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization. Sensors, 18(11), 3938CrossRef Zhao, Z., Xu, K., Hui, G., & Hu, L. (2018). An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization. Sensors, 18(11), 3938CrossRef
145.
Zurück zum Zitat Maheswar, R., et al. (2021). CBPR: A cluster-based backpressure routing for the internet of things. Wireless Personal Communications, 116, 1–19. Maheswar, R., et al. (2021). CBPR: A cluster-based backpressure routing for the internet of things. Wireless Personal Communications, 116, 1–19.
147.
151.
Zurück zum Zitat Valerio, V. D., Presti, F. L., Petrioli, C., Picari, L., Spaccini, D., & Basagni, S. (2019). CARMA: Channel-aware reinforcement learning-based multi-path adaptive routing for underwater wireless sensor networks. IEEE Journal on Selected Areas in Communications, 37(11), 2634–2647. https://doi.org/10.1109/JSAC.2019.2933968CrossRef Valerio, V. D., Presti, F. L., Petrioli, C., Picari, L., Spaccini, D., & Basagni, S. (2019). CARMA: Channel-aware reinforcement learning-based multi-path adaptive routing for underwater wireless sensor networks. IEEE Journal on Selected Areas in Communications, 37(11), 2634–2647. https://​doi.​org/​10.​1109/​JSAC.​2019.​2933968CrossRef
153.
Zurück zum Zitat Vinitha, A., & Rukmini, M. S. S. (2019). Secure and energy aware multi-hop routing protocol in WSN using Taylor-based hybrid optimization algorithm. Journal of King Saud University-Computer and Information Sciences, 33(2021), 1–12 Vinitha, A., & Rukmini, M. S. S. (2019). Secure and energy aware multi-hop routing protocol in WSN using Taylor-based hybrid optimization algorithm. Journal of King Saud University-Computer and Information Sciences, 33(2021), 1–12
154.
Zurück zum Zitat Guirguis, A., Karmoose, M., Habak, K., El-Nainay, M., & Youssef, M. (2018). Cooperation-based multi-hop routing protocol for cognitive radio networks. Journal of Network and Computer Applications, 110, 27–42CrossRef Guirguis, A., Karmoose, M., Habak, K., El-Nainay, M., & Youssef, M. (2018). Cooperation-based multi-hop routing protocol for cognitive radio networks. Journal of Network and Computer Applications, 110, 27–42CrossRef
155.
Zurück zum Zitat Geng, H., Shi, X., Wang, Z., & Yin, X. (2018). A hop-by-hop dynamic distributed multipath routing mechanism for link state network. Computer Communications, 116, 225–239CrossRef Geng, H., Shi, X., Wang, Z., & Yin, X. (2018). A hop-by-hop dynamic distributed multipath routing mechanism for link state network. Computer Communications, 116, 225–239CrossRef
156.
Zurück zum Zitat Lim, C. L., Goh, C., & Li, Y. (2019). Long-term routing stability of wireless sensor networks in a real-world environment. IEEE Access, 7, 74351–74360CrossRef Lim, C. L., Goh, C., & Li, Y. (2019). Long-term routing stability of wireless sensor networks in a real-world environment. IEEE Access, 7, 74351–74360CrossRef
157.
Zurück zum Zitat Fu, X., Yao, H., & Yang, Y. (2019). Cascading Failures in Wireless Sensor Networks with load Redistribution of Links and Nodes. Ad Hoc Networks, 93, 101900CrossRef Fu, X., Yao, H., & Yang, Y. (2019). Cascading Failures in Wireless Sensor Networks with load Redistribution of Links and Nodes. Ad Hoc Networks, 93, 101900CrossRef
158.
Zurück zum Zitat Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2019). Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes. Wireless Networks, 25(2), 713–730CrossRef Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2019). Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes. Wireless Networks, 25(2), 713–730CrossRef
159.
Zurück zum Zitat Liu, X., Wen, Z., Liu, D., Zou, J., & Li, S. (2019). Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT. Sensors, 19(1), 182CrossRef Liu, X., Wen, Z., Liu, D., Zou, J., & Li, S. (2019). Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT. Sensors, 19(1), 182CrossRef
163.
Zurück zum Zitat Li, M., Zhang, L., Li, V. O., Shan, X., & Ren, Y. (2005). An energy-aware multipath routing protocol for mobile ad hoc networks. ACM Sigcomm Asia, 5, 10–12 Li, M., Zhang, L., Li, V. O., Shan, X., & Ren, Y. (2005). An energy-aware multipath routing protocol for mobile ad hoc networks. ACM Sigcomm Asia, 5, 10–12
164.
Zurück zum Zitat Villasenor-Gonzalez, L., Ge, Y., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125CrossRef Villasenor-Gonzalez, L., Ge, Y., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125CrossRef
165.
Zurück zum Zitat Mnaouer, A. B., Chen, L., Foh, C. H., & Tantra, J. W. (2007). OPHMR: an optimized polymorphic hybrid multicast routing protocol for MANET. IEEE Transactions on Mobile Computing, 6(5), 551–562CrossRef Mnaouer, A. B., Chen, L., Foh, C. H., & Tantra, J. W. (2007). OPHMR: an optimized polymorphic hybrid multicast routing protocol for MANET. IEEE Transactions on Mobile Computing, 6(5), 551–562CrossRef
166.
Zurück zum Zitat Wu, Z.-Y., & Song, H.-T. (2008). Ant-based energy-aware disjoint multipath routing algorithm for MANETs. The Computer Journal, 53(2), 166–176CrossRef Wu, Z.-Y., & Song, H.-T. (2008). Ant-based energy-aware disjoint multipath routing algorithm for MANETs. The Computer Journal, 53(2), 166–176CrossRef
167.
Zurück zum Zitat Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad hoc networks, 9(1), 28–47CrossRef Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad hoc networks, 9(1), 28–47CrossRef
168.
Zurück zum Zitat Huang, M., Liang, Q., & Xi, J. (2012). A parallel disjointed multi-path routing algorithm based on OLSR and energy in ad hoc networks. Journal of Networks, 7(4), 613CrossRef Huang, M., Liang, Q., & Xi, J. (2012). A parallel disjointed multi-path routing algorithm based on OLSR and energy in ad hoc networks. Journal of Networks, 7(4), 613CrossRef
169.
Zurück zum Zitat Sarkar, S., & Datta, R. (2017). Mobility-aware route selection technique for mobile ad hoc networks. IET Wireless Sensor Systems, 7(3), 55–64CrossRef Sarkar, S., & Datta, R. (2017). Mobility-aware route selection technique for mobile ad hoc networks. IET Wireless Sensor Systems, 7(3), 55–64CrossRef
170.
Zurück zum Zitat Sobral, J. V. V., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Saleem, K., & Kozlov, S. A. (2019). Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access, 7, 107032–107046CrossRef Sobral, J. V. V., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Saleem, K., & Kozlov, S. A. (2019). Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access, 7, 107032–107046CrossRef
171.
Zurück zum Zitat Wang, Z., Bulut, E. & Szymanski, B. K. (2009). Energy efficient collision aware multipath routing for wireless sensor networks. In Communications, 2009. ICC'09. IEEE International Conference on, pp. 1–5, IEEE. Wang, Z., Bulut, E. & Szymanski, B. K. (2009). Energy efficient collision aware multipath routing for wireless sensor networks. In Communications, 2009. ICC'09. IEEE International Conference on, pp. 1–5, IEEE.
172.
Zurück zum Zitat Badis, H. & Al Agha, K. (2004). QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay. vol. 4, pp. 2181–2184, IEEE. Badis, H. & Al Agha, K. (2004). QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay. vol. 4, pp. 2181–2184, IEEE.
174.
Zurück zum Zitat Wang, Z., Chen, Y., & Li, C. (2014). PSR: A lightweight proactive source routing protocol for mobile ad hoc networks. IEEE transactions on Vehicular Technology, 63(2), 859–868CrossRef Wang, Z., Chen, Y., & Li, C. (2014). PSR: A lightweight proactive source routing protocol for mobile ad hoc networks. IEEE transactions on Vehicular Technology, 63(2), 859–868CrossRef
176.
Zurück zum Zitat Yi, J. & Parrein, B. (2017). Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2). Yi, J. & Parrein, B. (2017). Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2).
177.
Zurück zum Zitat Bhattacharya, A., & Sinha, K. (2017). An efficient protocol for load-balanced multipath routing in mobile ad hoc networks. Ad Hoc Networks, 63, 104–114CrossRef Bhattacharya, A., & Sinha, K. (2017). An efficient protocol for load-balanced multipath routing in mobile ad hoc networks. Ad Hoc Networks, 63, 104–114CrossRef
178.
Zurück zum Zitat Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2018). A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks. IEEE Transactions on Green Communications and Networking, 2(4), 1115–1127CrossRef Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2018). A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks. IEEE Transactions on Green Communications and Networking, 2(4), 1115–1127CrossRef
179.
Zurück zum Zitat Debroy, S., Samanta, P., Bashir, A., & Chatterjee, M. (2019). SpEED-IoT: Spectrum aware energy efficient routing for device-to-device IoT communication. Future Generation Computer Systems, 93, 833–848CrossRef Debroy, S., Samanta, P., Bashir, A., & Chatterjee, M. (2019). SpEED-IoT: Spectrum aware energy efficient routing for device-to-device IoT communication. Future Generation Computer Systems, 93, 833–848CrossRef
180.
Zurück zum Zitat Mukherjee, T., Gupta, S. K., & Varsamopoulos, G. J. P. E. (2009). Energy optimization for proactive unicast route maintenance in MANETs under end-to-end reliability requirements. Performance Evaluation, 66(3–5), 141–157CrossRef Mukherjee, T., Gupta, S. K., & Varsamopoulos, G. J. P. E. (2009). Energy optimization for proactive unicast route maintenance in MANETs under end-to-end reliability requirements. Performance Evaluation, 66(3–5), 141–157CrossRef
181.
Zurück zum Zitat Huynh, D.-T., Chen, M., Huynh, T.-T., & Hai, C. H. (2019). Energy consumption optimization for green Device-to-Device multimedia communications. Future Generation Computer Systems, 92, 1131–1141CrossRef Huynh, D.-T., Chen, M., Huynh, T.-T., & Hai, C. H. (2019). Energy consumption optimization for green Device-to-Device multimedia communications. Future Generation Computer Systems, 92, 1131–1141CrossRef
182.
Zurück zum Zitat Lim, K.-W., Jung, W.-S., & Ko, Y.-B. (2015). Energy efficient quality-of-service for WLAN-based D2D communications. Ad Hoc Networks, 25, 102–116CrossRef Lim, K.-W., Jung, W.-S., & Ko, Y.-B. (2015). Energy efficient quality-of-service for WLAN-based D2D communications. Ad Hoc Networks, 25, 102–116CrossRef
183.
Zurück zum Zitat Swain, S. N., & Murthy, C. S. R. (2020). A novel energy-aware utility maximization for efficient device-to-device communication in LTE-WiFi networks under mixed traffic scenarios. Computer Networks, 167, 106995CrossRef Swain, S. N., & Murthy, C. S. R. (2020). A novel energy-aware utility maximization for efficient device-to-device communication in LTE-WiFi networks under mixed traffic scenarios. Computer Networks, 167, 106995CrossRef
184.
Zurück zum Zitat Ghahfarokhi, B. S., Azadmanesh, M., & Khorasani, S. K. (2018). Energy and spectrum efficient mobility-aware resource management for D2D multicasting. Computer Networks, 146, 47–64CrossRef Ghahfarokhi, B. S., Azadmanesh, M., & Khorasani, S. K. (2018). Energy and spectrum efficient mobility-aware resource management for D2D multicasting. Computer Networks, 146, 47–64CrossRef
185.
Zurück zum Zitat Liang, J.-M., Chang, P.-Y., Chen, J.-J., Huang, C.-F., & Tseng, Y.-C. (2018). Energy-efficient DRX scheduling for D2D communication in 5G networks. Journal of Network and Computer Applications, 116, 53–64CrossRef Liang, J.-M., Chang, P.-Y., Chen, J.-J., Huang, C.-F., & Tseng, Y.-C. (2018). Energy-efficient DRX scheduling for D2D communication in 5G networks. Journal of Network and Computer Applications, 116, 53–64CrossRef
186.
Zurück zum Zitat Clausen, T. & Jacquet P. (2003). Optimized link state routing protocol (OLSR), 2070–1721. Clausen, T. & Jacquet P. (2003). Optimized link state routing protocol (OLSR), 2070–1721.
187.
Zurück zum Zitat De Rango, F., Guerriero, F., & Fazio, P. (2010). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726CrossRef De Rango, F., Guerriero, F., & Fazio, P. (2010). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726CrossRef
188.
Zurück zum Zitat Ramesh, V., Supriya K. S, & Subbaiah P. (2014). Design of novel energy conservative preemptive dynamic source routing for MANET. In Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on, (pp. 1–7), IEEE. Ramesh, V., Supriya K. S, & Subbaiah P. (2014). Design of novel energy conservative preemptive dynamic source routing for MANET. In Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on, (pp. 1–7), IEEE.
189.
Zurück zum Zitat Kanagasundaram, H., & Kathirvel, A. (2018). EIMO-ESOLSR: energy efficient and security-based model for OLSR routing protocol in mobile ad-hoc network. IET Communications, 13(2019), 553–559. Kanagasundaram, H., & Kathirvel, A. (2018). EIMO-ESOLSR: energy efficient and security-based model for OLSR routing protocol in mobile ad-hoc network. IET Communications, 13(2019), 553–559.
190.
Zurück zum Zitat Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572CrossRef Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572CrossRef
191.
Zurück zum Zitat Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks, 77, 95–107CrossRef Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks, 77, 95–107CrossRef
192.
Zurück zum Zitat Riasudheen, H., Selvamani, K., Mukherjee, S., & Divyasree, I. R. (2020). An efficient energy-aware routing scheme for cloud-assisted MANETs in 5G. Ad Hoc Networks, 97, 102021CrossRef Riasudheen, H., Selvamani, K., Mukherjee, S., & Divyasree, I. R. (2020). An efficient energy-aware routing scheme for cloud-assisted MANETs in 5G. Ad Hoc Networks, 97, 102021CrossRef
193.
Zurück zum Zitat Kunz, T., & Alhalimi, R. (2010). Energy-efficient proactive routing in MANET: Energy metrics accuracy. Ad Hoc Networks, 8(7), 755–766CrossRef Kunz, T., & Alhalimi, R. (2010). Energy-efficient proactive routing in MANET: Energy metrics accuracy. Ad Hoc Networks, 8(7), 755–766CrossRef
199.
Zurück zum Zitat P. H. Le and G. Pujolle, "A link-disjoint interference-aware multi-path routing protocol for mobile ad hoc network," 2011: Springer, pp. 649–661. P. H. Le and G. Pujolle, "A link-disjoint interference-aware multi-path routing protocol for mobile ad hoc network," 2011: Springer, pp. 649–661.
200.
Zurück zum Zitat De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726CrossRef De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726CrossRef
202.
Zurück zum Zitat Li, Z., & Wu, Y. (2017). Smooth mobility and link reliability-based optimized link state routing scheme for manets. IEEE Communications Letters, 21(7), 1529–1532CrossRef Li, Z., & Wu, Y. (2017). Smooth mobility and link reliability-based optimized link state routing scheme for manets. IEEE Communications Letters, 21(7), 1529–1532CrossRef
203.
Zurück zum Zitat Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2017). Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484CrossRef Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2017). Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484CrossRef
204.
Zurück zum Zitat J. Yi and B. Parrein, "Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2)," 2070–1721, 2017. J. Yi and B. Parrein, "Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2)," 2070–1721, 2017.
205.
Zurück zum Zitat Jabbar, W. A., Ismail, M., & Nordin, R. (2017). Energy and mobility conscious multipath routing scheme for route stability and load balancing in MANETs. Simulation Modelling Practice and Theory, 77, 245–271CrossRef Jabbar, W. A., Ismail, M., & Nordin, R. (2017). Energy and mobility conscious multipath routing scheme for route stability and load balancing in MANETs. Simulation Modelling Practice and Theory, 77, 245–271CrossRef
206.
Zurück zum Zitat Kacem, I., Sait, B., Mekhilef, S., & Sabeur, N. (2018). A new routing approach for mobile Ad Hoc systems based on fuzzy petri nets and ant system. IEEE Access, 6, 65705–65720CrossRef Kacem, I., Sait, B., Mekhilef, S., & Sabeur, N. (2018). A new routing approach for mobile Ad Hoc systems based on fuzzy petri nets and ant system. IEEE Access, 6, 65705–65720CrossRef
Metadaten
Titel
Routing constraints in the device-to-device communication for beyond IoT 5G networks: a review
verfasst von
S. Malathy
P. Jayarajan
M. H. D. Nour Hindia
Valmik Tilwari
Kaharudin Dimyati
Kamarul Ariffin Noordin
I. S. Amiri
Publikationsdatum
24.05.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02641-y

Weitere Artikel der Ausgabe 5/2021

Wireless Networks 5/2021 Zur Ausgabe