Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Sailcraft Concepts

verfasst von : Giovanni Vulpetti

Erschienen in: Fast Solar Sailing

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of sea sailing can be extended to space traveling. The basic idea is to utilize some energy already present in space for avoiding the main drawback of a rocket vehicle: to be forced to carry all necessary reaction mass onboard. The more energetic is the mission transfer the more massive is the spaceship. Future space missions are expected to increase in number, purpose, and energy. It should be clear that any new good method for practically enlarging human exploration and expansion does not mean quitting rocket propulsion. On the other hand, there are a high number of missions that are impossible to rockets, not strictly in mathematical terms, but because of the very large mass and complexity of the involved systems, including space infrastructures. In this chapter, three sailing modes for traveling in space are dealt with; only the third one is a “strict” sail, namely, a two-dimensional object through which an external-to-vehicle momentum flux can be captured and translated into thrust. After a summary of the solar-wind properties, subsequent sections describe concepts regarding generation of thrust via solar wind, but involve large volumes. In principle, this is not a limitation: problems would come from other features, as discussed. All other section/subsections of the chapter describe sailcraft and its main systems, at least as they are conceived today and how presumably may evolve. Solar-wind large fluctuations are emphasized by means of data coming from the NASA’s OMNIWeb interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It was formerly named the interplanetary magnetic field, or IMF. Famous is the Parker’s theory; a subset of Parker’s papers is given in [2329].
 
2
I.e. lasting less than one solar rotation period, typically.
 
3
Many elements, one or several times or totally ionized, are present in the solar wind: for example, C, N, O, Na, Ar, Xe, Mg, Si, Ca, S, Kr, Fe. Energy/charge distribution tails up to about 60 keV/e have been measured by spacecraft Ulysses; ions exhibit energy/mass values up to about \(60(Z_{\mathit{ion}}^{+}/A_{\mathit{ion}})~\mathrm{keV}/\mathrm{u}\), with a mean value of ≃10 keV/u.
 
4
During the flight, tearing may be caused by space debris and/or micro-meteorites.
 
5
In Chap. 6, we will give this adjective a quantitative meaning together with equations that may allow the analyst to calculate the effect of wrinkling on thrust case by case.
 
6
This monitoring may be effected via television cameras exploring the sail surface.
 
7
A polymer containing the so-called imide monomers, widely utilized in the electronics industry.
 
8
A piece of 10 m×10 m 2-micron sheet of CP1 was used by NASA for its experimental NanoSail-D [14], which did not achieve its orbit because of the failure of its launcher (August 2008). The flight spare—NanoSail-D2—was successfully launched in December 2010. It completed its mission on September 17, 2011.
 
9
Only very preliminary studies have been performed in Italy in the Nineties.
 
10
Though space satellites such as the NASA IMAGE spacecraft (March 2000–December 2005) and the ESA four-satellite CLUSTER (∼3–19 earth radii, still operational since August 2000) have discovered or confirmed fundamental phenomena in the Earth’s magnetosphere, nevertheless the realization of a sailcraft-based mission like GeoSail would combine SPS technological/physical aspects with measurements in the Earth magnetosphere in the region ∼11–23 earth radii (http://​sci.​esa.​int).
 
11
Part of the solar wind penetrates into the magnetosphere and is channeled down to Earth, bringing about a number of phenomena, some of which may disturb human telecommunications and electric-energy transport (to cite the most common).
 
Literatur
1.
Zurück zum Zitat Andrews, D. G., Zubrin, R. M. (1988), Magnetic sails and interstellar travel. In 39th IAF Congress, Bangalore, India. IAF-88-553, also published on Journal of the British Interplanetary Society, 43, 265–272. Andrews, D. G., Zubrin, R. M. (1988), Magnetic sails and interstellar travel. In 39th IAF Congress, Bangalore, India. IAF-88-553, also published on Journal of the British Interplanetary Society, 43, 265–272.
2.
Zurück zum Zitat Balogh, A., Lanzerotti, L. J., Suess, S. T. (2008), The Heliosphere Through the Solar Activity Cycle. Berlin: Springer-Praxis. ISBN 978-3-540-74301-9. CrossRef Balogh, A., Lanzerotti, L. J., Suess, S. T. (2008), The Heliosphere Through the Solar Activity Cycle. Berlin: Springer-Praxis. ISBN 978-3-540-74301-9. CrossRef
3.
Zurück zum Zitat Bavassano, B., Pietropaolo, E., Bruno, R. (2004), Compressive fluctuations in high-latitude solar wind. Annals of Geophysics, 22, 689–696. CrossRef Bavassano, B., Pietropaolo, E., Bruno, R. (2004), Compressive fluctuations in high-latitude solar wind. Annals of Geophysics, 22, 689–696. CrossRef
5.
Zurück zum Zitat Brumfiel, G. (2011), Voyager 1 reaches surprisingly calm boundary of interstellar space. Scientific American TM , June 15, 2011. Brumfiel, G. (2011), Voyager 1 reaches surprisingly calm boundary of interstellar space. Scientific American TM , June 15, 2011.
6.
Zurück zum Zitat Bruno, R., Carbone, V. (2005), The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 2. Bruno, R., Carbone, V. (2005), The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 2.
7.
Zurück zum Zitat Davidson, P. A. (2001), Cambridge Texts in Applied Mathematics. An Introduction to Magnetohydrodynamics. Cambridge: Cambridge University Press. ISBN 0-521-794870. CrossRefMATH Davidson, P. A. (2001), Cambridge Texts in Applied Mathematics. An Introduction to Magnetohydrodynamics. Cambridge: Cambridge University Press. ISBN 0-521-794870. CrossRefMATH
8.
Zurück zum Zitat Ecke, R. (2005), The turbulent problem. Los Alamos Science, 29. Ecke, R. (2005), The turbulent problem. Los Alamos Science, 29.
9.
Zurück zum Zitat Goedbloed, J. P. H., Poedts, S. (2004), Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press. ISBN 0-521-62607-2. CrossRef Goedbloed, J. P. H., Poedts, S. (2004), Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press. ISBN 0-521-62607-2. CrossRef
10.
Zurück zum Zitat Janhunen, P. (2004), Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 20(4). Janhunen, P. (2004), Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 20(4).
11.
Zurück zum Zitat Janhunen, P., Sandroos, A. (2007), Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Annals of Geophysics, 25, 755–767. CrossRef Janhunen, P., Sandroos, A. (2007), Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Annals of Geophysics, 25, 755–767. CrossRef
12.
Zurück zum Zitat Janhunen, P. (2008), The electric sail—a new propulsion method which may enable fast missions to the outer solar system. Journal of the British Interplanetary Society, 61(8), 322–325. Janhunen, P. (2008), The electric sail—a new propulsion method which may enable fast missions to the outer solar system. Journal of the British Interplanetary Society, 61(8), 322–325.
13.
Zurück zum Zitat Jenkins, C. H. M. (Ed.) (2006), Progress in Aeronautics and Astronautics: Vol. 212. Recent Advances in Gossamer Spacecraft. Washington: AIAA. Jenkins, C. H. M. (Ed.) (2006), Progress in Aeronautics and Astronautics: Vol. 212. Recent Advances in Gossamer Spacecraft. Washington: AIAA.
14.
Zurück zum Zitat Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. (2011), NanoSail-D: a solar sail demonstration mission. Acta Astronautica, 68(5–6), 571–575. Special issue: Aosta 2009 Symposium. CrossRef Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. (2011), NanoSail-D: a solar sail demonstration mission. Acta Astronautica, 68(5–6), 571–575. Special issue: Aosta 2009 Symposium. CrossRef
15.
Zurück zum Zitat Kolmogorov, A. N. (1941), The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 301–305. Reprinted in Philosophical Transactions of the Royal Society of London, Series A, 434, 913 (1991). Kolmogorov, A. N. (1941), The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 301–305. Reprinted in Philosophical Transactions of the Royal Society of London, Series A, 434, 913 (1991).
16.
Zurück zum Zitat Krimigis, S. M., Roelof, E. C., Decker, R. B., Hill, M. E. (2011), Zero outward flow velocity for plasma in a heliosheath transition layer. Nature, 474, 359–361. doi:10.1038/nature10115. CrossRef Krimigis, S. M., Roelof, E. C., Decker, R. B., Hill, M. E. (2011), Zero outward flow velocity for plasma in a heliosheath transition layer. Nature, 474, 359–361. doi:10.​1038/​nature10115. CrossRef
17.
Zurück zum Zitat Matloff, G. L. (2005), Deep-Space Probes (2nd edn.). Chichester: Springer-Praxis. ISBN 3-540-24772-6. Matloff, G. L. (2005), Deep-Space Probes (2nd edn.). Chichester: Springer-Praxis. ISBN 3-540-24772-6.
18.
Zurück zum Zitat Marsch, E. (2006), Kinetic physics of the solar corona and solar wind, Living Reviews in Solar Physics, 3(1). Marsch, E. (2006), Kinetic physics of the solar corona and solar wind, Living Reviews in Solar Physics, 3(1).
19.
Zurück zum Zitat Mathieu, J., Scott, J. (2000), An Introduction to Turbulent Flow. Cambridge: Cambridge University Press. ISBN 0-521-77538-8. MATH Mathieu, J., Scott, J. (2000), An Introduction to Turbulent Flow. Cambridge: Cambridge University Press. ISBN 0-521-77538-8. MATH
20.
Zurück zum Zitat Mengali, G., Quarta, A. A., Janhunen, P. (2008), Considerations of electric sail trajectory design. Journal of the British Interplanetary Society, 61(8), 326–329. Mengali, G., Quarta, A. A., Janhunen, P. (2008), Considerations of electric sail trajectory design. Journal of the British Interplanetary Society, 61(8), 326–329.
21.
Zurück zum Zitat Meyer-Vernet, N. (2007), Cambridge Atmospheric and Space Science Series. Basics of the Solar Wind. Cambridge: Cambridge University Press. ISBN 978-0-521-81420-1. CrossRef Meyer-Vernet, N. (2007), Cambridge Atmospheric and Space Science Series. Basics of the Solar Wind. Cambridge: Cambridge University Press. ISBN 978-0-521-81420-1. CrossRef
23.
Zurück zum Zitat Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664–676. CrossRef Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664–676. CrossRef
24.
Zurück zum Zitat Parker, E. N. (1960), The hydrodynamic theory of solar Corpuscular radiation and stellar winds. The Astrophysical Journal, 132, 821–866. CrossRef Parker, E. N. (1960), The hydrodynamic theory of solar Corpuscular radiation and stellar winds. The Astrophysical Journal, 132, 821–866. CrossRef
25.
Zurück zum Zitat Parker, E. N. (1991), Heating solar coronal holes. The Astrophysical Journal, 372, 719. CrossRef Parker, E. N. (1991), Heating solar coronal holes. The Astrophysical Journal, 372, 719. CrossRef
26.
Zurück zum Zitat Parker, E. N. (1996), The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101(A5), 10587–10626. CrossRef Parker, E. N. (1996), The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101(A5), 10587–10626. CrossRef
27.
Zurück zum Zitat Parker, E. N. (1999), Space physics before the space age. The Astrophysical Journal, 525C, 792–793. Parker, E. N. (1999), Space physics before the space age. The Astrophysical Journal, 525C, 792–793.
28.
Zurück zum Zitat Parker, E. N. (2009), Solar magnetism: the state of our knowledge and ignorance. Space Science Reviews, 144, 15–24. CrossRef Parker, E. N. (2009), Solar magnetism: the state of our knowledge and ignorance. Space Science Reviews, 144, 15–24. CrossRef
29.
Zurück zum Zitat Parker, E. N. (2010), Kinetic and hydrodynamic representations of coronal expansion and the solar wind. AIP Conference Proceedings, 1216, 3–7. CrossRef Parker, E. N. (2010), Kinetic and hydrodynamic representations of coronal expansion and the solar wind. AIP Conference Proceedings, 1216, 3–7. CrossRef
30.
Zurück zum Zitat Pizzo, V. J. (1991), The evolution of corotating stream fronts near the ecliptic plane in the inner solar system, 2: three-dimensional tilted dipole fronts. Journal of Geophysical Research, 96, 5405. CrossRef Pizzo, V. J. (1991), The evolution of corotating stream fronts near the ecliptic plane in the inner solar system, 2: three-dimensional tilted dipole fronts. Journal of Geophysical Research, 96, 5405. CrossRef
31.
Zurück zum Zitat Reynolds, O. (1895), On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London, Series A, 186, 123–164. doi:10.1098/rsta.1895.0004. CrossRefMATH Reynolds, O. (1895), On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London, Series A, 186, 123–164. doi:10.​1098/​rsta.​1895.​0004. CrossRefMATH
33.
Zurück zum Zitat Rozelot, J.-P. (2006), Solar and Heliospheric Origins of Space Weather Phenomena. Berlin: Springer. ISBN 3-540-33758-X, ISBN 978-3-540-33758-4. CrossRef Rozelot, J.-P. (2006), Solar and Heliospheric Origins of Space Weather Phenomena. Berlin: Springer. ISBN 3-540-33758-X, ISBN 978-3-540-33758-4. CrossRef
34.
35.
Zurück zum Zitat Shepherd, L. R. (1990), Memorandum of the interstellar space exploration committee. In 41st Congress of the International Astronautical Federation, Dresden, Germany. Shepherd, L. R. (1990), Memorandum of the interstellar space exploration committee. In 41st Congress of the International Astronautical Federation, Dresden, Germany.
36.
Zurück zum Zitat Smith, E. J., Zhou, X. (2007), Turbulence and Non-Linear Processes in Astrophysical Plasmas, Honolulu, Hawaii. Smith, E. J., Zhou, X. (2007), Turbulence and Non-Linear Processes in Astrophysical Plasmas, Honolulu, Hawaii.
37.
Zurück zum Zitat Toivanen, P. K., Janhunen, P. (2009), Electric sailing under observed solar wind conditions. Astrophysics and Space Sciences Transactions, 5, 61–69. CrossRef Toivanen, P. K., Janhunen, P. (2009), Electric sailing under observed solar wind conditions. Astrophysics and Space Sciences Transactions, 5, 61–69. CrossRef
38.
Zurück zum Zitat Vulpetti, G. (1980), Noise-effects in relativistic pure-rocket dynamics, Journal of the British Interplanetary Society, 33, 27–34. Vulpetti, G. (1980), Noise-effects in relativistic pure-rocket dynamics, Journal of the British Interplanetary Society, 33, 27–34.
39.
Zurück zum Zitat Vulpetti, G. (1990), Dynamics of field sail spaceships. Acta Astronautica, 21, 679–687. CrossRefMATH Vulpetti, G. (1990), Dynamics of field sail spaceships. Acta Astronautica, 21, 679–687. CrossRefMATH
40.
Zurück zum Zitat Vulpetti, G., Pecchioli, M. (1991), The two-sail propulsion concept. Paper IAA-91-721, 42nd Congress of the International Astronautical Federation, Montreal, Canada, October 5–11. Vulpetti, G., Pecchioli, M. (1991), The two-sail propulsion concept. Paper IAA-91-721, 42nd Congress of the International Astronautical Federation, Montreal, Canada, October 5–11.
41.
Zurück zum Zitat Vulpetti, G. (1994), A critical review on the viability of a space propulsion based on the solar wind momentum flux. Acta Astronautica, 32(32), 641–644. CrossRef Vulpetti, G. (1994), A critical review on the viability of a space propulsion based on the solar wind momentum flux. Acta Astronautica, 32(32), 641–644. CrossRef
42.
Zurück zum Zitat Vulpetti, G. (2000), Sailcraft-based mission to the solar gravitational lens. In STAIF-2000, Albuquerque, NM, USA, January 30–February 3. Vulpetti, G. (2000), Sailcraft-based mission to the solar gravitational lens. In STAIF-2000, Albuquerque, NM, USA, January 30–February 3.
43.
Zurück zum Zitat Vulpetti, G., Santoli, S., Mocci, G. (2008), Preliminary investigation on carbon nanotube membranes for photon solar sails. Journal of the British Interplanetary Society, 61(8), 284–289. Vulpetti, G., Santoli, S., Mocci, G. (2008), Preliminary investigation on carbon nanotube membranes for photon solar sails. Journal of the British Interplanetary Society, 61(8), 284–289.
44.
Zurück zum Zitat Wilson, M. N. (1986), Superconducting Magnets. Oxford: Oxford University Press. Wilson, M. N. (1986), Superconducting Magnets. Oxford: Oxford University Press.
45.
Zurück zum Zitat Winglee, R. M., Slough, J., Ziemba, T., Goodson, A. (2000), Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion. Journal of Geophysical Research, 105(A9), 21,067–21,077. CrossRef Winglee, R. M., Slough, J., Ziemba, T., Goodson, A. (2000), Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion. Journal of Geophysical Research, 105(A9), 21,067–21,077. CrossRef
46.
Zurück zum Zitat Wood, B. E., Howard, R. A., Thernisien, A., Socker, D. G. (2010), The three-dimensional morphology of a corotating interaction region in the inner heliosphere. The Astrophysical Journal Letters, 708, L89. doi:10.1088/2041-8205/708/2/L89. CrossRef Wood, B. E., Howard, R. A., Thernisien, A., Socker, D. G. (2010), The three-dimensional morphology of a corotating interaction region in the inner heliosphere. The Astrophysical Journal Letters, 708, L89. doi:10.​1088/​2041-8205/​708/​2/​L89. CrossRef
47.
Zurück zum Zitat Zubrin, R. M. (1989), Use of magnetic sails for Mars exploration mission. In AIAA-ASME-ASEE 25th Joint Propulsion Conference, July 1989. AIAA-89-2861. Zubrin, R. M. (1989), Use of magnetic sails for Mars exploration mission. In AIAA-ASME-ASEE 25th Joint Propulsion Conference, July 1989. AIAA-89-2861.
48.
Zurück zum Zitat Zubrin, R. M. (1993), The use of magnetic sails to escape from low Earth orbit. Journal of the British Interplanetary Society, 46. Zubrin, R. M. (1993), The use of magnetic sails to escape from low Earth orbit. Journal of the British Interplanetary Society, 46.
Metadaten
Titel
Sailcraft Concepts
verfasst von
Giovanni Vulpetti
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4777-7_3

    Premium Partner