Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

26.01.2021 | Original Article

Scalable image decomposition

verfasst von: Hwanbok Mun, Gang-Joon Yoon, Jinjoo Song, Sang Min Yoon

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image decomposition, which separates a given input image into structure and texture images, has been used for various applications in the fields of computer graphics and image processing. Most previous image decomposition algorithms and applications start with high-quality images, but it requires numerous steps to separate and edit the high-resolution structure and texture images from the low-resolution input counterparts. This paper proposes a simple but effective end-to-end deep neural image decomposition network, which is called ”scalable image decomposition”, by decomposing and upscaling structure and texture images from the degraded input image at the same time. We train the deep neural network to automatically estimate high-resolution structure and texture from the low-resolution input image by designing a shared feature extractor, and structure and texture upscaling networks which have a powerful capability to establish and distinguish a complex mapping between the low-resolution input image and high-quality structure and texture, while preserving more contextual information without any prior information regarding the low-resolution input image. Quantitative and qualitative analyses of the proposed scalable image decomposition network validate that the proposed method is stable and robust against blurring and staircase effects by separating texture and structure upscaling networks in real-time. The predicted upscaled structure and texture images can be used to a variety of applications, such as image abstraction, detail enhancement, and pencil sketching.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, pp 265–283
2.
Zurück zum Zitat Bannore V (2009) Iterative-interpolation super-resolution image reconstruction: a computationally efficient technique. In: Springer, vol 195 Bannore V (2009) Iterative-interpolation super-resolution image reconstruction: a computationally efficient technique. In: Springer, vol 195
3.
Zurück zum Zitat Chaudhury KN, Rithwik K (2015) Image denoising using optimally weighted bilateral filters: A sure and fast approach. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 108–112. IEEE Chaudhury KN, Rithwik K (2015) Image denoising using optimally weighted bilateral filters: A sure and fast approach. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 108–112. IEEE
4.
Zurück zum Zitat Chen Q, Xu J, Koltun V (2017) Fast image processing with fully-convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2497–2506 Chen Q, Xu J, Koltun V (2017) Fast image processing with fully-convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2497–2506
5.
Zurück zum Zitat Chen Z, Badrinarayanan V, Lee CY, Rabinovich A (2018) GradNorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: Dy J, Krause A (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 80, pp 794–803. PMLR, Stockholmsmässan, Stockholm Sweden Chen Z, Badrinarayanan V, Lee CY, Rabinovich A (2018) GradNorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: Dy J, Krause A (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 80, pp 794–803. PMLR, Stockholmsmässan, Stockholm Sweden
6.
Zurück zum Zitat Cheng D, Kou KI (2019) FFT multichannel interpolation and application to image super-resolution. Signal Process 162:21–34CrossRef Cheng D, Kou KI (2019) FFT multichannel interpolation and application to image super-resolution. Signal Process 162:21–34CrossRef
7.
Zurück zum Zitat Cho H, Lee H, Kang H, Lee S (2014) Bilateral texture filtering. ACM Trans Graph TOG 33(4):128 Cho H, Lee H, Kang H, Lee S (2014) Bilateral texture filtering. ACM Trans Graph TOG 33(4):128
8.
Zurück zum Zitat Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef
9.
Zurück zum Zitat Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, pp. 391–407. Springer Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, pp. 391–407. Springer
10.
Zurück zum Zitat Fan Q, Chen D, Yuan L, Hua G, Yu N, Chen B (2019) A general decoupled learning framework for parameterized image operators. IEEE Trans Pattern Anal Mach Intell 43(1):33–47CrossRef Fan Q, Chen D, Yuan L, Hua G, Yu N, Chen B (2019) A general decoupled learning framework for parameterized image operators. IEEE Trans Pattern Anal Mach Intell 43(1):33–47CrossRef
11.
Zurück zum Zitat Fan Q, Yang J, Hua G, Chen B, Wipf D (2017) A generic deep architecture for single image reflection removal and image smoothing. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3238–3247 Fan Q, Yang J, Hua G, Chen B, Wipf D (2017) A generic deep architecture for single image reflection removal and image smoothing. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3238–3247
12.
Zurück zum Zitat Fan Q, Yang J, Wipf D, Chen B, Tong X (2018) Image smoothing via unsupervised learning. In: SIGGRAPH Asia 2018 Technical Papers, p 259. ACM Fan Q, Yang J, Wipf D, Chen B, Tong X (2018) Image smoothing via unsupervised learning. In: SIGGRAPH Asia 2018 Technical Papers, p 259. ACM
13.
Zurück zum Zitat Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans Graph TOG 27(3):1–10CrossRef Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans Graph TOG 27(3):1–10CrossRef
15.
Zurück zum Zitat He K, Sun J, Tang X (2010) Guided image filtering. In: European conference on computer vision, pp. 1–14. Springer He K, Sun J, Tang X (2010) Guided image filtering. In: European conference on computer vision, pp. 1–14. Springer
16.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
17.
Zurück zum Zitat Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
18.
Zurück zum Zitat Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, Curran Associates, Inc., pp 769–776 Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, Curran Associates, Inc., pp 769–776
19.
Zurück zum Zitat Ji Y, Zhang H, Wu QMJ, (2018) Salient object detection via multi-scale attention cnn. Neurocomputing 322:130–140CrossRef Ji Y, Zhang H, Wu QMJ, (2018) Salient object detection via multi-scale attention cnn. Neurocomputing 322:130–140CrossRef
20.
Zurück zum Zitat Kang H, Lee S, Chui CK (2009) Flow-based image abstraction. IEEE Trans Vis Comput Graph 15(1):62–76CrossRef Kang H, Lee S, Chui CK (2009) Flow-based image abstraction. IEEE Trans Vis Comput Graph 15(1):62–76CrossRef
21.
Zurück zum Zitat Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph TOG 32(6):176 Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph TOG 32(6):176
22.
Zurück zum Zitat Kim J, Kwon Lee J, Mu Lee K (2016) Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1646–1654 Kim J, Kwon Lee J, Mu Lee K (2016) Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1646–1654
23.
Zurück zum Zitat Kim J, Kwon Lee J, Mu Lee K (2016) Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1637–1645 Kim J, Kwon Lee J, Mu Lee K (2016) Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1637–1645
24.
Zurück zum Zitat Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
25.
Zurück zum Zitat Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. In: ACM Transactions on Graphics (ToG), vol 26, p 96. ACM Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. In: ACM Transactions on Graphics (ToG), vol 26, p 96. ACM
26.
Zurück zum Zitat Kyprianidis JE, Döllner J (2008) Image abstraction by structure adaptive filtering. In: Proceedings of EG UK Theory and Practice of Computer Graphics, pp 51–58 Kyprianidis JE, Döllner J (2008) Image abstraction by structure adaptive filtering. In: Proceedings of EG UK Theory and Practice of Computer Graphics, pp 51–58
27.
Zurück zum Zitat Lai WS, Huang JB, Ahuja N, Yang MH (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE conference on computer vision and pattern recognition Lai WS, Huang JB, Ahuja N, Yang MH (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE conference on computer vision and pattern recognition
28.
Zurück zum Zitat Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690
29.
Zurück zum Zitat Li Z, Yang J, 0002 ZL, Yang X, Jeon G, 0002 WW (2019) Feedback network for image super-resolution. Computer Vision and Pattern Recognition arxiv:abs/1903.09814 Li Z, Yang J, 0002 ZL, Yang X, Jeon G, 0002 WW (2019) Feedback network for image super-resolution. Computer Vision and Pattern Recognition arxiv:abs/1903.09814
30.
Zurück zum Zitat Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144 Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144
31.
Zurück zum Zitat Liu S, Pan J, Yang MH (2016) Learning recursive filters for low-level vision via a hybrid neural network. In: European conference on computer vision, pp 560–576. Springer Liu S, Pan J, Yang MH (2016) Learning recursive filters for low-level vision via a hybrid neural network. In: European conference on computer vision, pp 560–576. Springer
32.
Zurück zum Zitat Liu W, Chen X, Shen C, Liu Z, Yang J (2017) Semi-global weighted least squares in image filtering. In: Proceedings of the IEEE International conference on computer vision, pp 5861–5869 Liu W, Chen X, Shen C, Liu Z, Yang J (2017) Semi-global weighted least squares in image filtering. In: Proceedings of the IEEE International conference on computer vision, pp 5861–5869
33.
Zurück zum Zitat Lu K, You S, Barnes N (2018) Deep texture and structure aware filtering network for image smoothing. In: Proceedings of the European conference on computer vision (ECCV), pp 217–233 Lu K, You S, Barnes N (2018) Deep texture and structure aware filtering network for image smoothing. In: Proceedings of the European conference on computer vision (ECCV), pp 217–233
34.
Zurück zum Zitat Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision, pp 568–580. Springer Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision, pp 568–580. Springer
35.
Zurück zum Zitat Ren Q, Hu R (2018) Multi-scale deep encoder-decoder network for salient object detection. Neurocomputing 316:95–104CrossRef Ren Q, Hu R (2018) Multi-scale deep encoder-decoder network for salient object detection. Neurocomputing 316:95–104CrossRef
36.
Zurück zum Zitat Rudin LI, Osher SJ, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom 60:259–268MathSciNetCrossRef Rudin LI, Osher SJ, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom 60:259–268MathSciNetCrossRef
37.
Zurück zum Zitat Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883 Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883
38.
Zurück zum Zitat Song J, Cho H, Yoon J, Yoon SM (2017) Structure adaptive total variation minimization-based image decomposition. IEEE Trans Circuits Syst Video Technol 28(9):2164–2176CrossRef Song J, Cho H, Yoon J, Yoon SM (2017) Structure adaptive total variation minimization-based image decomposition. IEEE Trans Circuits Syst Video Technol 28(9):2164–2176CrossRef
39.
Zurück zum Zitat Song J, Yoon G, Yoon SM (2019) Monolithic image decomposition. Neurocomputing 366(9):264–275CrossRef Song J, Yoon G, Yoon SM (2019) Monolithic image decomposition. Neurocomputing 366(9):264–275CrossRef
40.
Zurück zum Zitat Tai Y, Yang J, Liu X (2017) Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3147–3155 Tai Y, Yang J, Liu X (2017) Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3147–3155
41.
Zurück zum Zitat Tian J, Ma KK (2010) Stochastic super-resolution image reconstruction. J Vis Commun Image Rep 21(3):232–244CrossRef Tian J, Ma KK (2010) Stochastic super-resolution image reconstruction. J Vis Commun Image Rep 21(3):232–244CrossRef
42.
Zurück zum Zitat Timofte R, Agustsson E, Van Gool L, Yang MH, Zhang L (2017) Ntire 2017 challenge on single image super-resolution: Methods and results. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 114–125 Timofte R, Agustsson E, Van Gool L, Yang MH, Zhang L (2017) Ntire 2017 challenge on single image super-resolution: Methods and results. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 114–125
43.
Zurück zum Zitat Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of ICCV, pp 839–846 Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of ICCV, pp 839–846
44.
Zurück zum Zitat Tong T, Li G, Liu X, Gao Q (2017) Image super-resolution using dense skip connections. In: Proceedings of the IEEE international conference on computer vision, pp 4799–4807 Tong T, Li G, Liu X, Gao Q (2017) Image super-resolution using dense skip connections. In: Proceedings of the IEEE international conference on computer vision, pp 4799–4807
45.
Zurück zum Zitat Winnemöller H, Olsen SC, Gooch B (2006) Real-time video abstraction. ACM Trans Graph 25(3):1221–1226CrossRef Winnemöller H, Olsen SC, Gooch B (2006) Real-time video abstraction. ACM Trans Graph 25(3):1221–1226CrossRef
46.
Zurück zum Zitat Wu YT, Yeh JS, Wu FC, Chuang YY (2017) Tangent-based binary image abstraction. J Imag 3(2):16CrossRef Wu YT, Yeh JS, Wu FC, Chuang YY (2017) Tangent-based binary image abstraction. J Imag 3(2):16CrossRef
47.
Zurück zum Zitat Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via l 0 gradient minimization. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp 1–12 Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via l 0 gradient minimization. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp 1–12
48.
Zurück zum Zitat Xu L, Ren J, Yan Q, Liao R, Jia J (2015) Deep edge-aware filters. In: International Conference on Machine Learning, pp 1669–1678 Xu L, Ren J, Yan Q, Liao R, Jia J (2015) Deep edge-aware filters. In: International Conference on Machine Learning, pp 1669–1678
49.
Zurück zum Zitat Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139 Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139
50.
Zurück zum Zitat Zhang B, Allebach JP (2008) Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans Image Process 17(5):664–678MathSciNetCrossRef Zhang B, Allebach JP (2008) Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans Image Process 17(5):664–678MathSciNetCrossRef
51.
Zurück zum Zitat Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21(11):4544–4556MathSciNetCrossRef Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21(11):4544–4556MathSciNetCrossRef
52.
Zurück zum Zitat Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: European conference on computer vision, pp 815–830. Springer Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: European conference on computer vision, pp 815–830. Springer
53.
Zurück zum Zitat Zhang XJ, Wu XL (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238CrossRef Zhang XJ, Wu XL (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238CrossRef
54.
Zurück zum Zitat Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 286–301 Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 286–301
55.
Zurück zum Zitat Zhao H, Gallo O, Frosio I, Kautz J (2015) Loss functions for neural networks for image processing. arXiv preprint arXiv:1511.08861 Zhao H, Gallo O, Frosio I, Kautz J (2015) Loss functions for neural networks for image processing. arXiv preprint arXiv:1511.08861
Metadaten
Titel
Scalable image decomposition
verfasst von
Hwanbok Mun
Gang-Joon Yoon
Jinjoo Song
Sang Min Yoon
Publikationsdatum
26.01.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05677-x

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe