Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

19.02.2021 | Original Article

Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals

verfasst von: F. Carrillo-Perez, L. J. Herrera, J. M. Carceller, A. Guillén

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most captivating problems being faced nowadays in Physics are ultra-high energy cosmic rays. They are high-energy radiations coming mainly from outside the Solar System, and when they enter Earth’s atmosphere, they produce a cascade of particles. This cascade of particles, named as extensive air shower, can be recorded by means of photomultiplier tubes in surface detectors, obtaining different recordings of the energy signal (since the air shower can hit one or more detectors). Based on these signals, different features can be obtained that might give an insight into which particle has caused the extensive air shower, which is of utmost importance for physicists. Therefore, this work presents a supervised learning algorithm to determine that the particle is a photon or a hadron. Convolutional neural networks and feed forward neural networks are compared in order to analyze the importance of spatial information for the classification. Then, a comparison between using the information of each surface detector separately and integrating the information from them for the classification is studied, showing that the integration improves the results compared to using each surface detector’s trace independently. Furthermore, a comparison between manually extracted features from the signal and the automatically extracted features by the convolutional neural network is done, showing the classification potential of the latter. Finally, the addition of particle shower features which are external to the surface detector measurements is assessed, showing that the combination of automatically extracted features and external variables is able to predict the particle that has produced the air shower with an accuracy of 98.87%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ulrich R, Engel R, Unger M (2011) Hadronic multiparticle production at ultrahigh energies and extensive air showers. Phys Rev D 83(5):054026CrossRef Ulrich R, Engel R, Unger M (2011) Hadronic multiparticle production at ultrahigh energies and extensive air showers. Phys Rev D 83(5):054026CrossRef
2.
Zurück zum Zitat Auger P, Ehrenfest P, Maze R, Daudin J, Fréon RA (1939) Extensive cosmic-ray showers. Rev Mod Phys 11(3–4):288CrossRef Auger P, Ehrenfest P, Maze R, Daudin J, Fréon RA (1939) Extensive cosmic-ray showers. Rev Mod Phys 11(3–4):288CrossRef
3.
Zurück zum Zitat Observatory TPACR (2015) Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 798:172–213CrossRef Observatory TPACR (2015) Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 798:172–213CrossRef
4.
Zurück zum Zitat Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification. Aquacult Eng 89:102053CrossRef Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification. Aquacult Eng 89:102053CrossRef
5.
Zurück zum Zitat Fan Y, Kangkang X, Hui W, Zheng Y, Tao B (2020) Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network. IEEE Access 8:25111–25121CrossRef Fan Y, Kangkang X, Hui W, Zheng Y, Tao B (2020) Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network. IEEE Access 8:25111–25121CrossRef
6.
Zurück zum Zitat Shamshirband S, Rabczuk T, Chau K-W (2019) A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access 7:164650–164666CrossRef Shamshirband S, Rabczuk T, Chau K-W (2019) A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access 7:164650–164666CrossRef
7.
Zurück zum Zitat Ardabili SF, Najafi B, Shamshirband S, Bidgoli BM, Deo RC, Chau K (2018) Computational intelligence approach for modeling hydrogen production: a review. Eng Appl Comput Fluid Mech 12(1):438–458 Ardabili SF, Najafi B, Shamshirband S, Bidgoli BM, Deo RC, Chau K (2018) Computational intelligence approach for modeling hydrogen production: a review. Eng Appl Comput Fluid Mech 12(1):438–458
8.
Zurück zum Zitat Taormina R, Chau K-W (2015) ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng Appl Artif Intell 45:429–440CrossRef Taormina R, Chau K-W (2015) ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng Appl Artif Intell 45:429–440CrossRef
9.
Zurück zum Zitat Wu CL, Chau K-W (2013) Prediction of rainfall time series using modular soft computing methods. Eng Appl Artif Intell 26(3):997–1007CrossRef Wu CL, Chau K-W (2013) Prediction of rainfall time series using modular soft computing methods. Eng Appl Artif Intell 26(3):997–1007CrossRef
10.
Zurück zum Zitat Erdmann M, Glombitza J, Walz D (2018) A deep learning-based reconstruction of cosmic ray-induced air showers. Astropart Phys 97:46–53CrossRef Erdmann M, Glombitza J, Walz D (2018) A deep learning-based reconstruction of cosmic ray-induced air showers. Astropart Phys 97:46–53CrossRef
11.
Zurück zum Zitat Erdmann M, Schlüter F, Šmída R (2019) Classification and recovery of radio signals from cosmic ray induced air showers with deep learning. J Instrum 14(04):P04005CrossRef Erdmann M, Schlüter F, Šmída R (2019) Classification and recovery of radio signals from cosmic ray induced air showers with deep learning. J Instrum 14(04):P04005CrossRef
13.
Zurück zum Zitat Guillén A, Bueno A, Carceller JM, Martínez-Velázquez JC, Rubio G, Todero Peixoto CJ, Sanchez-Lucas P (2019) Deep learning techniques applied to the physics of extensive air showers. Astropart Phys 111:12–22CrossRef Guillén A, Bueno A, Carceller JM, Martínez-Velázquez JC, Rubio G, Todero Peixoto CJ, Sanchez-Lucas P (2019) Deep learning techniques applied to the physics of extensive air showers. Astropart Phys 111:12–22CrossRef
14.
Zurück zum Zitat Velinov PIY (2016) Expanded classification of solar cosmic ray events causing ground level enhancements (GLEs). Types and groups of GLEs. Comptes Rendus de l’Académie Bulgare des Sciences 69(10):1341–1351 Velinov PIY (2016) Expanded classification of solar cosmic ray events causing ground level enhancements (GLEs). Types and groups of GLEs. Comptes Rendus de l’Académie Bulgare des Sciences 69(10):1341–1351
15.
Zurück zum Zitat Glombitza J (2019) Air-shower reconstruction at the Pierre Auger observatory based on deep learning. In: ICRC, vol 36, p 270 Glombitza J (2019) Air-shower reconstruction at the Pierre Auger observatory based on deep learning. In: ICRC, vol 36, p 270
16.
Zurück zum Zitat Herrera LJ, Peixoto CJT, Baños O, Carceller JM, Carrillo F, Guillén A (2020) Composition classification of ultra-high energy cosmic rays. Entropy 22(9):998CrossRef Herrera LJ, Peixoto CJT, Baños O, Carceller JM, Carrillo F, Guillén A (2020) Composition classification of ultra-high energy cosmic rays. Entropy 22(9):998CrossRef
17.
Zurück zum Zitat Carrillo-Perez F, Herrera LJ, Carceller JM, Guillén A (2019) Improving classification of ultra-high energy cosmic rays using spacial locality by means of a convolutional DNN. In: International work-conference on artificial neural networks. Springer, pp 222–232 Carrillo-Perez F, Herrera LJ, Carceller JM, Guillén A (2019) Improving classification of ultra-high energy cosmic rays using spacial locality by means of a convolutional DNN. In: International work-conference on artificial neural networks. Springer, pp 222–232
18.
Zurück zum Zitat Ostapchenko S (2011) Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: Qgsjet-II model. Phys Rev D 83(1):014018CrossRef Ostapchenko S (2011) Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: Qgsjet-II model. Phys Rev D 83(1):014018CrossRef
19.
Zurück zum Zitat Heck D, Knapp J, Capdevielle JN, Schatz G, Thouw T (1998) CORSIKA: A Monte Carlo code to simulate extensive air showers. Report fzka 6019(11) Heck D, Knapp J, Capdevielle JN, Schatz G, Thouw T (1998) CORSIKA: A Monte Carlo code to simulate extensive air showers. Report fzka 6019(11)
20.
Zurück zum Zitat Argiro S, Barroso SLC, Gonzalez J, Nellen L, Paul T, Porter TA, Prado L Jr, Roth M, Ulrich R, Veberič D (2007) The offline software framework of the Pierre Auger observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 580(3):1485–1496CrossRef Argiro S, Barroso SLC, Gonzalez J, Nellen L, Paul T, Porter TA, Prado L Jr, Roth M, Ulrich R, Veberič D (2007) The offline software framework of the Pierre Auger observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 580(3):1485–1496CrossRef
21.
Zurück zum Zitat Gonzalez JG, IceCube Collaboration et al (2016) Measurement of the muon content of air showers with icetop. In: Journal of physics: conference series, vol 718. IOP Publishing, p 052017 Gonzalez JG, IceCube Collaboration et al (2016) Measurement of the muon content of air showers with icetop. In: Journal of physics: conference series, vol 718. IOP Publishing, p 052017
22.
Zurück zum Zitat Kégl B (2013) Measurement of the muon signal using the temporal and spectral structure of the signals in surface detectors of the Pierre Auger observatory. In: 33rd international cosmic ray conference (ICRC2013) Kégl B (2013) Measurement of the muon signal using the temporal and spectral structure of the signals in surface detectors of the Pierre Auger observatory. In: 33rd international cosmic ray conference (ICRC2013)
23.
Zurück zum Zitat Garcia-Gamez D (2013) Measurement of atmospheric production depths of muons with the Pierre Auger observatory. In: EPJ web of conferences, vol 53. EDP Sciences, p 04008 Garcia-Gamez D (2013) Measurement of atmospheric production depths of muons with the Pierre Auger observatory. In: EPJ web of conferences, vol 53. EDP Sciences, p 04008
24.
Zurück zum Zitat Valiño I, Pierre Auger Collaboration et al (2015) Measurements of the muon content of air showers at the Pierre Auger observatory. In: Journal of physics: conference series, vol 632. IOP Publishing, p 012103 Valiño I, Pierre Auger Collaboration et al (2015) Measurements of the muon content of air showers at the Pierre Auger observatory. In: Journal of physics: conference series, vol 632. IOP Publishing, p 012103
25.
Zurück zum Zitat Aab A, Abreu P, Aglietta M, Ahn EJ, Samarai IA, Albuquerque IFM, Allekotte I, Allen J, Allison P, Almela A et al (2015) Muons in air showers at the Pierre Auger observatory: mean number in highly inclined events. Phys Rev D 91(3):032003CrossRef Aab A, Abreu P, Aglietta M, Ahn EJ, Samarai IA, Albuquerque IFM, Allekotte I, Allen J, Allison P, Almela A et al (2015) Muons in air showers at the Pierre Auger observatory: mean number in highly inclined events. Phys Rev D 91(3):032003CrossRef
26.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
27.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
28.
Zurück zum Zitat Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef
29.
Zurück zum Zitat Fernández-Redondo M, Hernández-Espinosa C (2001) Weight initialization methods for multilayer feedforward. In: ESANN, pp 119–124 Fernández-Redondo M, Hernández-Espinosa C (2001) Weight initialization methods for multilayer feedforward. In: ESANN, pp 119–124
30.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256
31.
Zurück zum Zitat LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef
32.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
33.
Zurück zum Zitat Aznan Nik KN, Bonner S, Connolly J, Moubayed NA, Breckon T (2018) On the classification of SSVEP-based dry-EEG signals via convolutional neural networks. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 3726–3731 Aznan Nik KN, Bonner S, Connolly J, Moubayed NA, Breckon T (2018) On the classification of SSVEP-based dry-EEG signals via convolutional neural networks. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 3726–3731
34.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​1502.​03167
37.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
38.
Zurück zum Zitat Abu-Mostafa YS, Magdon-Ismail M, Lin H-T (2012) Learning from data, vol 4. AMLBook, New York Abu-Mostafa YS, Magdon-Ismail M, Lin H-T (2012) Learning from data, vol 4. AMLBook, New York
39.
Zurück zum Zitat Keerthi SS, Lin C-J (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7):1667–1689MATHCrossRef Keerthi SS, Lin C-J (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7):1667–1689MATHCrossRef
40.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G et al (2019) Pytorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G et al (2019) Pytorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:​1912.​01703
41.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH
42.
Zurück zum Zitat Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27CrossRef Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27CrossRef
43.
Zurück zum Zitat McKinney W (2010) Data structures for statistical computing in python. In: van der Walt S, Millman J (eds) Proceedings of the 9th python in science conference, pp 51–56 McKinney W (2010) Data structures for statistical computing in python. In: van der Walt S, Millman J (eds) Proceedings of the 9th python in science conference, pp 51–56
44.
Zurück zum Zitat van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30CrossRef van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30CrossRef
45.
Zurück zum Zitat Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRef Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRef
48.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
49.
Zurück zum Zitat Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323
51.
Zurück zum Zitat Hinz T, Navarro-Guerrero N, Magg S, Wermter S (2018) Speeding up the hyperparameter optimization of deep convolutional neural networks. Int J Comput Intell Appl 17(02):1850008CrossRef Hinz T, Navarro-Guerrero N, Magg S, Wermter S (2018) Speeding up the hyperparameter optimization of deep convolutional neural networks. Int J Comput Intell Appl 17(02):1850008CrossRef
52.
Zurück zum Zitat Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems, pp 2546–2554 Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems, pp 2546–2554
54.
Zurück zum Zitat Scholkopf B, Smola AJ (2018) Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning series. MIT Press, CambridgeCrossRef Scholkopf B, Smola AJ (2018) Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning series. MIT Press, CambridgeCrossRef
55.
Zurück zum Zitat Zhang Z, Zhang Y, Li Z (2018) Removing the feature correlation effect of multiplicative noise. In: Advances in neural information processing systems, pp 627–636 Zhang Z, Zhang Y, Li Z (2018) Removing the feature correlation effect of multiplicative noise. In: Advances in neural information processing systems, pp 627–636
56.
Zurück zum Zitat Bengio Y, Bergstra JS (2009) Slow, decorrelated features for pretraining complex cell-like networks. In: Advances in neural information processing systems, pp 99–107 Bengio Y, Bergstra JS (2009) Slow, decorrelated features for pretraining complex cell-like networks. In: Advances in neural information processing systems, pp 99–107
57.
Zurück zum Zitat Cogswell M, Ahmed F, Girshick R, Zitnick L, Batra D (2015) Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068 Cogswell M, Ahmed F, Girshick R, Zitnick L, Batra D (2015) Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:​1511.​06068
58.
Zurück zum Zitat Rodríguez P, Gonzalez J, Cucurull G, Gonfaus JM, Roca X (2016) Regularizing CNNs with locally constrained decorrelations. arXiv preprint arXiv:1611.01967 Rodríguez P, Gonzalez J, Cucurull G, Gonfaus JM, Roca X (2016) Regularizing CNNs with locally constrained decorrelations. arXiv preprint arXiv:​1611.​01967
Metadaten
Titel
Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals
verfasst von
F. Carrillo-Perez
L. J. Herrera
J. M. Carceller
A. Guillén
Publikationsdatum
19.02.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05679-9

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe