Skip to main content
Erschienen in: Water Resources Management 10/2022

20.06.2022

Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model

verfasst von: Wenxin Xu, Jie Chen, Xunchang J. Zhang

Erschienen in: Water Resources Management | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The accurate prediction of monthly streamflow is important in sustainable water resources planning and management. There is a growing interest in the development of deep learning models for monthly streamflow prediction with the advances in computer sciences. This study aims at investigating the spatial and temporal scale effects on predictive performance when using the deep learning model for monthly streamflow prediction. To achieve this goal, a hybrid deep learning prediction model combining Convolutional Neural Network and Gated Recurrent Unit (i.e., CNN-GRU) was first proposed and applied to many watersheds with varying hydroclimatic characteristics around globe. The Nash–Sutcliffe efficiency coefficient (NSE) and mean relative error (MRE) are used as criteria to evaluate the predictive performance. The results show that the deep learning model is more suitable for monthly streamflow predictions on watersheds with large drainage areas. The drainage area of 3,000 km2 can be considered as a threshold for the predictive performance. The median NSE increases from 0.31 to 0.40, while the median MRE decreases from 53.2% to 46.2% for watersheds with areas larger than 3,000 km2 compared with those with areas smaller than 3,000 km2. In addition, the predictive performance tends to get better with the extension of a training period for the model. When the length of the training period increases stepwise from 10 to 50 years, there is a large increase in NSE (from 0.28 to 0.40) and a moderate decrease in MRE (from 50.3% to 46.2%) for watersheds with areas larger than 3,000 km2. Similar changes can also be found for watersheds smaller than 3,000 km2. The 25- to 35-year training period is the minimum length to obtain a stable predictive performance for most watersheds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ai P, Song YH, Xiong CS, Chen BB, Yue ZX (2022) A novel medium- and long-term runoff combined forecasting model based on different lag periods. J Hydroinform 24(2):367–387 Ai P, Song YH, Xiong CS, Chen BB, Yue ZX (2022) A novel medium- and long-term runoff combined forecasting model based on different lag periods. J Hydroinform 24(2):367–387
Zurück zum Zitat Alizadeh B, Bafti AG, Kamangir H, Zhang Y, Wright DB, Franz KJ (2021) A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction. J Hydrol 601:126526CrossRef Alizadeh B, Bafti AG, Kamangir H, Zhang Y, Wright DB, Franz KJ (2021) A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction. J Hydrol 601:126526CrossRef
Zurück zum Zitat Arsenault R, Bazile R, Dallaire CO, Brissette F (2016) CANOPEX: A Canadian hydrometeorological watershed database. Hydrol Process 30:2734–2736CrossRef Arsenault R, Bazile R, Dallaire CO, Brissette F (2016) CANOPEX: A Canadian hydrometeorological watershed database. Hydrol Process 30:2734–2736CrossRef
Zurück zum Zitat Bloschl G, Sivapalan M (1995) Scale issues in hydrological modeling - A review. Hydrol Process 9:251–290CrossRef Bloschl G, Sivapalan M (1995) Scale issues in hydrological modeling - A review. Hydrol Process 9:251–290CrossRef
Zurück zum Zitat Chen L, Chen SB, Li S, Shen ZY (2019) Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. J Hydrol 571:36–49CrossRef Chen L, Chen SB, Li S, Shen ZY (2019) Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. J Hydrol 571:36–49CrossRef
Zurück zum Zitat Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput Sci 1724–1734 Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput Sci 1724–1734
Zurück zum Zitat Chu HB, Wei JH, Qiu J (2018) Monthly streamflow forecasting using EEMD-Lasso-DBN method based on multi-scale predictors selection. Water 10(10):1486CrossRef Chu HB, Wei JH, Qiu J (2018) Monthly streamflow forecasting using EEMD-Lasso-DBN method based on multi-scale predictors selection. Water 10(10):1486CrossRef
Zurück zum Zitat Cirstea RG, Micu DV, Muresan GM, Guo CJ, Yang B (2018) Correlated time series forecasting using multi-task deep neural networks. Cikm'18: Proceedings of the 27th Acm International Conference on Information and Knowledge Management 1527–1530 Cirstea RG, Micu DV, Muresan GM, Guo CJ, Yang B (2018) Correlated time series forecasting using multi-task deep neural networks. Cikm'18: Proceedings of the 27th Acm International Conference on Information and Knowledge Management 1527–1530
Zurück zum Zitat Fang K, Kifer D, Lawson K, Shen CP (2020) Evaluating the potential and challenges of an uncertainty quantification method for long short-term memory models for soil moisture predictions. Water Resour Res 56(12):e2020WR028095CrossRef Fang K, Kifer D, Lawson K, Shen CP (2020) Evaluating the potential and challenges of an uncertainty quantification method for long short-term memory models for soil moisture predictions. Water Resour Res 56(12):e2020WR028095CrossRef
Zurück zum Zitat Feng DP, Fang K, Shen CP (2020a) Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales. Water Resour Res 56(9):e2019WR026793CrossRef Feng DP, Fang K, Shen CP (2020a) Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales. Water Resour Res 56(9):e2019WR026793CrossRef
Zurück zum Zitat Feng ZK, Niu WJ, Tang ZY, Jiang ZQ, Xu Y, Liu Y, Zhang HR (2020b) Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J Hydrol 583:124627CrossRef Feng ZK, Niu WJ, Tang ZY, Jiang ZQ, Xu Y, Liu Y, Zhang HR (2020b) Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J Hydrol 583:124627CrossRef
Zurück zum Zitat Fu R, Zhang Z, Li L, Ieee (2016) Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (Yac) 324–328 Fu R, Zhang Z, Li L, Ieee (2016) Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (Yac) 324–328
Zurück zum Zitat Gao S, Huang YF, Zhang S, Han JC, Wang GQ, Zhang MX, Lin QS (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188CrossRef Gao S, Huang YF, Zhang S, Han JC, Wang GQ, Zhang MX, Lin QS (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188CrossRef
Zurück zum Zitat Gauch M, Mai J, Lin J (2021) The proper care and feeding of CAMELS: How limited training data affects streamflow prediction. Environ Model Softw 135:104926CrossRef Gauch M, Mai J, Lin J (2021) The proper care and feeding of CAMELS: How limited training data affects streamflow prediction. Environ Model Softw 135:104926CrossRef
Zurück zum Zitat Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with LSTM. Neural Comput 12:2451–2471CrossRef Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with LSTM. Neural Comput 12:2451–2471CrossRef
Zurück zum Zitat Guo J, Zhou JZ, Qin H, Zou Q, Li QQ (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081CrossRef Guo J, Zhou JZ, Qin H, Zou Q, Li QQ (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081CrossRef
Zurück zum Zitat Ha S, Choi S, Ieee (2016) Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. Int Joint Conf Neural Netw (IJCNN) 381–388 Ha S, Choi S, Ieee (2016) Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. Int Joint Conf Neural Netw (IJCNN) 381–388
Zurück zum Zitat Ha S, Liu DR, Mu L (2021) Prediction of Yangtze River streamflow based on deep learning neural network with El Nino-Southern Oscillation. Sci Rep 11(1):11738CrossRef Ha S, Liu DR, Mu L (2021) Prediction of Yangtze River streamflow based on deep learning neural network with El Nino-Southern Oscillation. Sci Rep 11(1):11738CrossRef
Zurück zum Zitat He RR, Chen YF, Huang Q, Pan ZW, Liu Y (2020a) Predictability of monthly streamflow time series and its relationship with basin characteristics: an empirical study based on the MOPEX basins. Water Resour Manag 34:4991–5007CrossRef He RR, Chen YF, Huang Q, Pan ZW, Liu Y (2020a) Predictability of monthly streamflow time series and its relationship with basin characteristics: an empirical study based on the MOPEX basins. Water Resour Manag 34:4991–5007CrossRef
Zurück zum Zitat He X, Luo J, Zuo G, Xie J (2019) Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks. Water Resour Manag 33:1571–1590CrossRef He X, Luo J, Zuo G, Xie J (2019) Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks. Water Resour Manag 33:1571–1590CrossRef
Zurück zum Zitat He XX, Luo JG, Li P, Zuo GG, Xie JC (2020b) A hybrid model based on variational mode decomposition and gradient boosting regression tree for monthly runoff forecasting. Water Resour Manag 34:865–884CrossRef He XX, Luo JG, Li P, Zuo GG, Xie JC (2020b) A hybrid model based on variational mode decomposition and gradient boosting regression tree for monthly runoff forecasting. Water Resour Manag 34:865–884CrossRef
Zurück zum Zitat Herbert ZC, Asghar Z, Oroza CA (2021) Long-term reservoir inflow forecasts: Enhanced water supply and inflow volume accuracy using deep learning. J Hydrol 601:126676CrossRef Herbert ZC, Asghar Z, Oroza CA (2021) Long-term reservoir inflow forecasts: Enhanced water supply and inflow volume accuracy using deep learning. J Hydrol 601:126676CrossRef
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780CrossRef
Zurück zum Zitat Hu CH, Wu Q, Li H, Jian SQ, Li N, Lou ZZ (2018) Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11):1543CrossRef Hu CH, Wu Q, Li H, Jian SQ, Li N, Lou ZZ (2018) Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11):1543CrossRef
Zurück zum Zitat Kashani MH, Inyurt S, Golabi MR, AmirRahmani M, Band SS (2022) Estimation of solar radiation by joint application of phase space reconstruction and a hybrid neural network model. Theoret Appl Climatol 147:1725–1742CrossRef Kashani MH, Inyurt S, Golabi MR, AmirRahmani M, Band SS (2022) Estimation of solar radiation by joint application of phase space reconstruction and a hybrid neural network model. Theoret Appl Climatol 147:1725–1742CrossRef
Zurück zum Zitat Kisi O (2015) Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour Manag 29:5109–5127CrossRef Kisi O (2015) Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour Manag 29:5109–5127CrossRef
Zurück zum Zitat Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol Earth Syst Sci 22:6005–6022CrossRef Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol Earth Syst Sci 22:6005–6022CrossRef
Zurück zum Zitat Kumar DN, Raju KS, Sathish T (2004) River flow forecasting using recurrent neural networks. Water Resour Manag 18:143–161CrossRef Kumar DN, Raju KS, Sathish T (2004) River flow forecasting using recurrent neural networks. Water Resour Manag 18:143–161CrossRef
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef
Zurück zum Zitat LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1:541–551CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1:541–551CrossRef
Zurück zum Zitat Liu JJ, Yuan X, Zeng JH, Jiao Y, Li Y, Zhong LH, Yao L (2022) Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol Earth Syst Sci 26:265–278CrossRef Liu JJ, Yuan X, Zeng JH, Jiao Y, Li Y, Zhong LH, Yao L (2022) Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol Earth Syst Sci 26:265–278CrossRef
Zurück zum Zitat Ma K, Feng DP, Lawson K, Tsai WP, Liang CA, Huang XR, Sharma ASO, Shen CP (2021) Transferring hydrologic data across continents - leveraging data-rich regions to improve hydrologic prediction in data-sparse regions. Water Resour Res 57(5):e2020WR028600CrossRef Ma K, Feng DP, Lawson K, Tsai WP, Liang CA, Huang XR, Sharma ASO, Shen CP (2021) Transferring hydrologic data across continents - leveraging data-rich regions to improve hydrologic prediction in data-sparse regions. Water Resour Res 57(5):e2020WR028600CrossRef
Zurück zum Zitat Madaeni F, Chokmani K, Lhissou R, Gauthier Y, Tolszczuk-Leclerc S (2022) Convolutional neural network and long short-term memory models for ice-jam predictions. Cryosphere 16:1447–1468CrossRef Madaeni F, Chokmani K, Lhissou R, Gauthier Y, Tolszczuk-Leclerc S (2022) Convolutional neural network and long short-term memory models for ice-jam predictions. Cryosphere 16:1447–1468CrossRef
Zurück zum Zitat Mehr AD, Ghadimi S, Marttila H, Haghighi AT (2022) A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theoret Appl Climatol 148:255–268CrossRef Mehr AD, Ghadimi S, Marttila H, Haghighi AT (2022) A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theoret Appl Climatol 148:255–268CrossRef
Zurück zum Zitat Merz R, Parajka J, Bloeschl G (2009) Scale effects in conceptual hydrological modeling. Water Resour Res 45:W09405 Merz R, Parajka J, Bloeschl G (2009) Scale effects in conceptual hydrological modeling. Water Resour Res 45:W09405
Zurück zum Zitat Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350CrossRef Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350CrossRef
Zurück zum Zitat Modaresi F, Araghinejad S, Ebrahimi K (2018) A Comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and k-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions. Water Resour Manag 32:243–258CrossRef Modaresi F, Araghinejad S, Ebrahimi K (2018) A Comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and k-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions. Water Resour Manag 32:243–258CrossRef
Zurück zum Zitat Mohammadi B, Linh NTT, Pham QB, Ahmed AN, Vojtekova J, Guan YQ, Abba SI, El-Shafie A (2020) Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol Sci J 65:1738–1751CrossRef Mohammadi B, Linh NTT, Pham QB, Ahmed AN, Vojtekova J, Guan YQ, Abba SI, El-Shafie A (2020) Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol Sci J 65:1738–1751CrossRef
Zurück zum Zitat Morovati K, Nakhaei P, Tian FQ, Tudaji M, Hou SY (2021) A Machine learning framework to predict reverse flow and water level: A case study of Tonle Sap Lake. J Hydrol 603:127168CrossRef Morovati K, Nakhaei P, Tian FQ, Tudaji M, Hou SY (2021) A Machine learning framework to predict reverse flow and water level: A case study of Tonle Sap Lake. J Hydrol 603:127168CrossRef
Zurück zum Zitat Ni LL, Wang D, Wu JF, Wang YK, Tao YW, Zhang JY, Liu JF (2020) Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. J Hydrol 586:124901CrossRef Ni LL, Wang D, Wu JF, Wang YK, Tao YW, Zhang JY, Liu JF (2020) Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. J Hydrol 586:124901CrossRef
Zurück zum Zitat Niu WJ, Feng ZK, Chen YB, Zhang HR, Cheng CT (2020) Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition. J Hydrol Eng 25(5):04020008CrossRef Niu WJ, Feng ZK, Chen YB, Zhang HR, Cheng CT (2020) Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition. J Hydrol Eng 25(5):04020008CrossRef
Zurück zum Zitat Niu WJ, Feng ZK, Zeng M, Feng BF, Min YW, Cheng CT, Zhou JZ (2019) Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Appl Soft Comput 82:105589CrossRef Niu WJ, Feng ZK, Zeng M, Feng BF, Min YW, Cheng CT, Zhou JZ (2019) Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Appl Soft Comput 82:105589CrossRef
Zurück zum Zitat Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-Artificial Intelligence models in hydrology: A review. J Hydrol 514:358–377CrossRef Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-Artificial Intelligence models in hydrology: A review. J Hydrol 514:358–377CrossRef
Zurück zum Zitat Oquab M, Bottou L, Laptev I, Sivic J, Ieee (2014) Learning and transferring mid-level image representations using convolutional neural networks. 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1717–1724 Oquab M, Bottou L, Laptev I, Sivic J, Ieee (2014) Learning and transferring mid-level image representations using convolutional neural networks. 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1717–1724
Zurück zum Zitat Parisouj P, Mohebzadeh H, Lee T (2020) Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States. Water Resour Manag 34:4113–4131CrossRef Parisouj P, Mohebzadeh H, Lee T (2020) Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States. Water Resour Manag 34:4113–4131CrossRef
Zurück zum Zitat Poul AK, Shourian M, Ebrahimi H (2019) A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction. Water Resour Manag 33:2907–2923CrossRef Poul AK, Shourian M, Ebrahimi H (2019) A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction. Water Resour Manag 33:2907–2923CrossRef
Zurück zum Zitat Qu JH, Ren K, Shi XY (2021) Binary grey wolf optimization-regularized extreme learning machine wrapper coupled with the boruta algorithm for monthly streamflow forecasting. Water Resour Manag 35:1029–1045CrossRef Qu JH, Ren K, Shi XY (2021) Binary grey wolf optimization-regularized extreme learning machine wrapper coupled with the boruta algorithm for monthly streamflow forecasting. Water Resour Manag 35:1029–1045CrossRef
Zurück zum Zitat Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117CrossRef Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117CrossRef
Zurück zum Zitat Shortridge JE, Guikema SD, Zaitchik BF (2016) Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol Earth Syst Sci 20:2611–2628CrossRef Shortridge JE, Guikema SD, Zaitchik BF (2016) Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol Earth Syst Sci 20:2611–2628CrossRef
Zurück zum Zitat Shu XS, Ding W, Peng Y, Wang ZR, Wu J, Li M (2021) Monthly streamflow forecasting using convolutional neural network. Water Resour Manag 35(15):5089–5104CrossRef Shu XS, Ding W, Peng Y, Wang ZR, Wu J, Li M (2021) Monthly streamflow forecasting using convolutional neural network. Water Resour Manag 35(15):5089–5104CrossRef
Zurück zum Zitat Slater LJ, Villarini G, Bradley AA, Vecchi GA (2019) A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Clim Dyn 53:7429–7445CrossRef Slater LJ, Villarini G, Bradley AA, Vecchi GA (2019) A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Clim Dyn 53:7429–7445CrossRef
Zurück zum Zitat Sudheer C, Maheswaran R, Panigrahi B, Mathur S (2014) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Appl 24:1381–1389CrossRef Sudheer C, Maheswaran R, Panigrahi B, Mathur S (2014) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Appl 24:1381–1389CrossRef
Zurück zum Zitat Sun XP, Wang J, She MFH, Kong LX (2014) Sparse representation with multi-manifold analysis for texture classification from few training images. Image vis Comput 32:835–846CrossRef Sun XP, Wang J, She MFH, Kong LX (2014) Sparse representation with multi-manifold analysis for texture classification from few training images. Image vis Comput 32:835–846CrossRef
Zurück zum Zitat Sun ZL, Long D, Yang WT, Li XY, Pan Y (2020) Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resour Res 56(4):e2019WR026250CrossRef Sun ZL, Long D, Yang WT, Li XY, Pan Y (2020) Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resour Res 56(4):e2019WR026250CrossRef
Zurück zum Zitat Tao YM, Gao XG, Hsu KL, Sorooshian S, Ihler A (2016) A deep neural network modeling framework to reduce bias in satellite precipitation products. J Hydrometeorol 17:931–945CrossRef Tao YM, Gao XG, Hsu KL, Sorooshian S, Ihler A (2016) A deep neural network modeling framework to reduce bias in satellite precipitation products. J Hydrometeorol 17:931–945CrossRef
Zurück zum Zitat Tennant C, Larsen L, Bellugi D, Moges E, Zhang L, Ma HX (2020) The utility of information flow in formulating discharge forecast models: a case study from an arid snow-dominated catchment. Water Resour Res 56(8):e2019WR024908CrossRef Tennant C, Larsen L, Bellugi D, Moges E, Zhang L, Ma HX (2020) The utility of information flow in formulating discharge forecast models: a case study from an arid snow-dominated catchment. Water Resour Res 56(8):e2019WR024908CrossRef
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B-Methodol 58(1):267–288 Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B-Methodol 58(1):267–288
Zurück zum Zitat Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef
Zurück zum Zitat Wang GX, Liu GS, Liu LA (2012) Spatial scale effect on seasonal streamflows in permafrost catchments on the Qinghai-Tibet Plateau. Hydrol Process 26:973–984CrossRef Wang GX, Liu GS, Liu LA (2012) Spatial scale effect on seasonal streamflows in permafrost catchments on the Qinghai-Tibet Plateau. Hydrol Process 26:973–984CrossRef
Zurück zum Zitat Wang J, Peng B, Zhang XJ (2018) Using a stacked residual LSTM model for sentiment intensity prediction. Neurocomputing 322:93–101CrossRef Wang J, Peng B, Zhang XJ (2018) Using a stacked residual LSTM model for sentiment intensity prediction. Neurocomputing 322:93–101CrossRef
Zurück zum Zitat Wang QJ, Robertson DE, Chiew FHS (2009a) A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45:W05407 Wang QJ, Robertson DE, Chiew FHS (2009a) A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45:W05407
Zurück zum Zitat Wang WC, Chau KW, Cheng CT, Qiu L (2009b) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef Wang WC, Chau KW, Cheng CT, Qiu L (2009b) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef
Zurück zum Zitat Wilson AC, Roelofs R, Stern M, Srebro N, Recht B (2017) The marginal value of adaptive gradient methods in machine learning. Adv Neural Inf Process Syst 30:4148–4158 Wilson AC, Roelofs R, Stern M, Srebro N, Recht B (2017) The marginal value of adaptive gradient methods in machine learning. Adv Neural Inf Process Syst 30:4148–4158
Zurück zum Zitat Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23:1350–1367CrossRef Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23:1350–1367CrossRef
Zurück zum Zitat Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45:W08432CrossRef Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45:W08432CrossRef
Zurück zum Zitat Xiang ZR, Yan J, Demir I (2020) A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour Res 56(1):e2019WR025326 Xiang ZR, Yan J, Demir I (2020) A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour Res 56(1):e2019WR025326
Zurück zum Zitat Xie T, Zhang G, Hou JW, Xie JC, Lv M, Liu FC (2019) Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin, China. J Hydrol 577:123915CrossRef Xie T, Zhang G, Hou JW, Xie JC, Lv M, Liu FC (2019) Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin, China. J Hydrol 577:123915CrossRef
Zurück zum Zitat Yang TT, Asanjan AA, Welles E, Gao XG, Sorooshian S, Liu XM (2017) Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resour Res 53:2786–2812CrossRef Yang TT, Asanjan AA, Welles E, Gao XG, Sorooshian S, Liu XM (2017) Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resour Res 53:2786–2812CrossRef
Zurück zum Zitat Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks ? Adv Neural Inf Process Syst 27(Nips 2014):27 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks ? Adv Neural Inf Process Syst 27(Nips 2014):27
Zurück zum Zitat Young PC, Beven KJ (1994) Data-based mechanistic modeling and the rainfall-flow nonlinearity. Environmetrics 5:335–363CrossRef Young PC, Beven KJ (1994) Data-based mechanistic modeling and the rainfall-flow nonlinearity. Environmetrics 5:335–363CrossRef
Zurück zum Zitat Yu JX, Zhang X, Xu LL, Dong J, Zhangzhong LL (2021) A hybrid CNN-GRU model for predicting soil moisture in maize root zone. Agric Water Manag 245:106649CrossRef Yu JX, Zhang X, Xu LL, Dong J, Zhangzhong LL (2021) A hybrid CNN-GRU model for predicting soil moisture in maize root zone. Agric Water Manag 245:106649CrossRef
Zurück zum Zitat Yuan XH, Chen C, Lei XH, Yuan YB, Adnan RM (2018) Monthly runoff forecasting based on LSTM-ALO model. Stoch Env Res Risk Assess 32:2199–2212CrossRef Yuan XH, Chen C, Lei XH, Yuan YB, Adnan RM (2018) Monthly runoff forecasting based on LSTM-ALO model. Stoch Env Res Risk Assess 32:2199–2212CrossRef
Zurück zum Zitat Zhang XL, Peng Y, Zhang C, Wang BD (2015) Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences. J Hydrol 530:137–152CrossRef Zhang XL, Peng Y, Zhang C, Wang BD (2015) Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences. J Hydrol 530:137–152CrossRef
Zurück zum Zitat Zhang YH, Ye AZ, Nguyen P, Analui B, Sorooshian S, Hsu KL (2021) Error characteristics and scale dependence of current satellite precipitation estimates products in hydrological modeling. Remote Sensing 13(16):3061CrossRef Zhang YH, Ye AZ, Nguyen P, Analui B, Sorooshian S, Hsu KL (2021) Error characteristics and scale dependence of current satellite precipitation estimates products in hydrological modeling. Remote Sensing 13(16):3061CrossRef
Zurück zum Zitat Zhao XH, Lv HF, Lv SJ, Sang YT, Wei YZ, Zhu XP (2021a) Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer. J Hydrol 601:126607CrossRef Zhao XH, Lv HF, Lv SJ, Sang YT, Wei YZ, Zhu XP (2021a) Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer. J Hydrol 601:126607CrossRef
Zurück zum Zitat Zhao XH, Lv HF, Wei YZ, Lv SJ, Zhu XP (2021b) Streamflow forecasting via two types of predictive structure-based gated recurrent unit models. Water 13(1):91CrossRef Zhao XH, Lv HF, Wei YZ, Lv SJ, Zhu XP (2021b) Streamflow forecasting via two types of predictive structure-based gated recurrent unit models. Water 13(1):91CrossRef
Zurück zum Zitat Zheng JD, Cheng JS, Yang Y (2014) Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing. Signal Process 96:362–374CrossRef Zheng JD, Cheng JS, Yang Y (2014) Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing. Signal Process 96:362–374CrossRef
Zurück zum Zitat Zhu S, Zhou J, Ye L, Meng C (2016) Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ Earth Sci 75(6):531CrossRef Zhu S, Zhou J, Ye L, Meng C (2016) Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ Earth Sci 75(6):531CrossRef
Zurück zum Zitat Zuo GG, Luo JG, Wang N, Lian YN, He XX (2020) Two-stage variational mode decomposition and support vector regression for streamflow forecasting. Hydrol Earth Syst Sci 24:5491–5518CrossRef Zuo GG, Luo JG, Wang N, Lian YN, He XX (2020) Two-stage variational mode decomposition and support vector regression for streamflow forecasting. Hydrol Earth Syst Sci 24:5491–5518CrossRef
Metadaten
Titel
Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model
verfasst von
Wenxin Xu
Jie Chen
Xunchang J. Zhang
Publikationsdatum
20.06.2022
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 10/2022
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-022-03216-y

Weitere Artikel der Ausgabe 10/2022

Water Resources Management 10/2022 Zur Ausgabe