Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 10/2020

18.07.2020 | Research Article-Civil Engineering

Scattering of Gravity Waves by Multiple Submerged Rubble-Mound Breakwaters

verfasst von: K. G. Vijay, V. Venkateswarlu, D. Karmakar

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical model based on multi-domain is developed to investigate the scattering of surface gravity waves by an array of submerged rubble-mound breakwaters. The boundary value problem is analysed in two dimensions under the assumption of small-amplitude wave theory in the water of finite depth. Analytical solution based on the eigenfunction expansion method is independently developed to validate the numerical model in addition to available results in the literature. Various configurations such as trapezoidal, triangular, and circular shapes are investigated parametrically. The performance characteristics are discussed by analysing the scattering coefficients (such as reflection, transmission, and damping coefficient) for different physical parameters like relative water depth, relative structural dimensions, relative spacing, and the number of submerged breakwaters. In the case of trapezoidal breakwaters, the crest width plays a major role in dampening the wave energy by a whopping 90%. Moreover, the wave damping performance of triangular breakwaters is very poor. The Bragg resonant reflection is observed to be a trivariate function, which depends on structural porosity, structural thickness, and the number of submerged breakwaters. The free spacing is evident in adjusting the position of Bragg resonant reflection by multiple equi-spaced structures of several shapes. The present study will be useful in the effective design of Bragg breakwaters for establishing a calm wave environment near the harbour regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In: Coastal Engineering Proceeding, pp. 1827–1846 (1972) Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In: Coastal Engineering Proceeding, pp. 1827–1846 (1972)
2.
Zurück zum Zitat Madsen, P.A.: Wave reflection from a vertical permeable wave absorber. Coast. Eng. 7(4), 381–396 (1983)CrossRef Madsen, P.A.: Wave reflection from a vertical permeable wave absorber. Coast. Eng. 7(4), 381–396 (1983)CrossRef
3.
Zurück zum Zitat Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng. 9(4), 371–386 (1985)CrossRef Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng. 9(4), 371–386 (1985)CrossRef
4.
Zurück zum Zitat Dalrymple, R.A.; Losada, M.A.; Martin, P.A.: Reflection and transmission from porous structures under oblique wave attack. J. Fluid Mech. 224, 625–644 (1991)MATHCrossRef Dalrymple, R.A.; Losada, M.A.; Martin, P.A.: Reflection and transmission from porous structures under oblique wave attack. J. Fluid Mech. 224, 625–644 (1991)MATHCrossRef
5.
Zurück zum Zitat Mallayachari, V.; Sundar, V.: Reflection characteristics of permeable seawalls. Coast. Eng. 23(1–2), 135–150 (1994)CrossRef Mallayachari, V.; Sundar, V.: Reflection characteristics of permeable seawalls. Coast. Eng. 23(1–2), 135–150 (1994)CrossRef
6.
Zurück zum Zitat Dattatri, J.; Raman, H.; Shankar, N.J.: Performance characteristics of submerged breakwaters. In: Coastal Engineering Proceedings, pp. 2153–2171 (1978). Dattatri, J.; Raman, H.; Shankar, N.J.: Performance characteristics of submerged breakwaters. In: Coastal Engineering Proceedings, pp. 2153–2171 (1978).
7.
Zurück zum Zitat Losada, I.J.; Silva, R.; Losada, M.A.: 3-D non-breaking regular wave interaction with submerged breakwaters. Coast. Eng. 28(1–4), 229–248 (1996)CrossRef Losada, I.J.; Silva, R.; Losada, M.A.: 3-D non-breaking regular wave interaction with submerged breakwaters. Coast. Eng. 28(1–4), 229–248 (1996)CrossRef
8.
Zurück zum Zitat Kobayashi, N.; Wurjanto, A.: Wave transmission over submerged breakwaters. J. Waterw. Port Coast. Ocean Eng. 115(5), 662–680 (1989)CrossRef Kobayashi, N.; Wurjanto, A.: Wave transmission over submerged breakwaters. J. Waterw. Port Coast. Ocean Eng. 115(5), 662–680 (1989)CrossRef
9.
Zurück zum Zitat Gu, G.Z.; Wang, H.: Numerical modeling for wave energy dissipation within porous submerged breakwaters of irregular cross section. In: Coastal Engineering Proceedings, pp. 1189–1202 (1993) Gu, G.Z.; Wang, H.: Numerical modeling for wave energy dissipation within porous submerged breakwaters of irregular cross section. In: Coastal Engineering Proceedings, pp. 1189–1202 (1993)
10.
Zurück zum Zitat Reddy, M.M.; Sannasiraj, S.A.; Natarajan, R.: Numerical investigation on the dynamics of a vertical wall defenced by an offshore breakwater. Ocean Eng. 34(5–6), 790–798 (2007)CrossRef Reddy, M.M.; Sannasiraj, S.A.; Natarajan, R.: Numerical investigation on the dynamics of a vertical wall defenced by an offshore breakwater. Ocean Eng. 34(5–6), 790–798 (2007)CrossRef
11.
Zurück zum Zitat Xie, S.L.; Li, Y.B.; Wu, Y.Q.; Gu, B.B.: Preliminary research on wave forces on quarter circular breakwater. Ocean Eng. 24(1), 14–18 (2006) Xie, S.L.; Li, Y.B.; Wu, Y.Q.; Gu, B.B.: Preliminary research on wave forces on quarter circular breakwater. Ocean Eng. 24(1), 14–18 (2006)
12.
Zurück zum Zitat Jiang, X.L.; Gu, H.B.; Li, Y.B.: Numerical simulation on hydraulic performances of quarter circular breakwater. China Ocean Eng. 22(4), 585–594 (2008) Jiang, X.L.; Gu, H.B.; Li, Y.B.: Numerical simulation on hydraulic performances of quarter circular breakwater. China Ocean Eng. 22(4), 585–594 (2008)
13.
Zurück zum Zitat Binumol, S.; Rao, S.; Hegde, A.V.: Wave reflection and loss characteristics of an emerged quarter circle breakwater with varying seaside perforations. J. Inst. Eng. (India): Ser. A 98(3), 311–315 (2017) Binumol, S.; Rao, S.; Hegde, A.V.: Wave reflection and loss characteristics of an emerged quarter circle breakwater with varying seaside perforations. J. Inst. Eng. (India): Ser. A 98(3), 311–315 (2017)
14.
Zurück zum Zitat Dhinakaran, G.; Sundar, V.; Sundaravadivelu, R.; Graw, K.U.: Hydrodynamic characteristics of seaside perforated semicircular breakwaters due to random waves. J. Waterw. Port Coast. Ocean Eng. 134(4), 237–251 (2008)CrossRef Dhinakaran, G.; Sundar, V.; Sundaravadivelu, R.; Graw, K.U.: Hydrodynamic characteristics of seaside perforated semicircular breakwaters due to random waves. J. Waterw. Port Coast. Ocean Eng. 134(4), 237–251 (2008)CrossRef
15.
Zurück zum Zitat Venkateswarlu, V.; Karmakar, D.: Wave scattering by vertical porous block placed over flat and elevated seabed. Mar. Syst. Ocean Technol. 14(2–3), 85–109 (2019)CrossRef Venkateswarlu, V.; Karmakar, D.: Wave scattering by vertical porous block placed over flat and elevated seabed. Mar. Syst. Ocean Technol. 14(2–3), 85–109 (2019)CrossRef
16.
Zurück zum Zitat Twu, S.W.; Liu, C.C.: Interaction of non-breaking regular waves with a periodic array of artificial porous bars. Coast. Eng. 51(3), 223–236 (2004)CrossRef Twu, S.W.; Liu, C.C.: Interaction of non-breaking regular waves with a periodic array of artificial porous bars. Coast. Eng. 51(3), 223–236 (2004)CrossRef
17.
Zurück zum Zitat Venkateswarlu, V.; Karmakar, D.: Influence of impermeable elevated bottom on the wave scattering due to multiple porous structures. J. Appl. Fluid Mech. 13(1), 371–385 (2020)CrossRef Venkateswarlu, V.; Karmakar, D.: Influence of impermeable elevated bottom on the wave scattering due to multiple porous structures. J. Appl. Fluid Mech. 13(1), 371–385 (2020)CrossRef
18.
Zurück zum Zitat Rambabu, A.C.; Mani, J.S.: Numerical prediction of performance of submerged breakwaters. Ocean Eng. 32(10), 1235–1246 (2005)CrossRef Rambabu, A.C.; Mani, J.S.: Numerical prediction of performance of submerged breakwaters. Ocean Eng. 32(10), 1235–1246 (2005)CrossRef
19.
Zurück zum Zitat Sankarbabu, K.; Sannasiraj, S.A.; Sundar, V.: Interaction of regular waves with a group of dual porous circular cylinders. Appl. Ocean Res. 29(4), 180–190 (2007)CrossRef Sankarbabu, K.; Sannasiraj, S.A.; Sundar, V.: Interaction of regular waves with a group of dual porous circular cylinders. Appl. Ocean Res. 29(4), 180–190 (2007)CrossRef
20.
Zurück zum Zitat Liu, Y.; Li, H.J.; Zhu, L.: Bragg reflection of water waves by multiple submerged semi-circular breakwaters. Appl. Ocean Res. 56, 67–78 (2016)CrossRef Liu, Y.; Li, H.J.; Zhu, L.: Bragg reflection of water waves by multiple submerged semi-circular breakwaters. Appl. Ocean Res. 56, 67–78 (2016)CrossRef
22.
Zurück zum Zitat Meng, Q.R.; Lu, D.Q.: Scattering of gravity waves by a porous rectangular barrier on a seabed. J. Hydrodyn. 28(3), 519–522 (2016)CrossRef Meng, Q.R.; Lu, D.Q.: Scattering of gravity waves by a porous rectangular barrier on a seabed. J. Hydrodyn. 28(3), 519–522 (2016)CrossRef
23.
Zurück zum Zitat Vijay, K.G.; Sahoo, T.: Scattering of surface gravity waves by a pair of floating porous boxes. J. Offshore Mech. Arct. Eng. 141(5), 051803-1-10 (2019)CrossRef Vijay, K.G.; Sahoo, T.: Scattering of surface gravity waves by a pair of floating porous boxes. J. Offshore Mech. Arct. Eng. 141(5), 051803-1-10 (2019)CrossRef
24.
Zurück zum Zitat Pérez-Romero, D.M.; Ortega-Sánchez, M.; Moñino, A.; Losada, M.A.: Characteristic friction coefficient and scale effects in oscillatory porous flow. Coast. Eng. 56(9), 931–939 (2009)CrossRef Pérez-Romero, D.M.; Ortega-Sánchez, M.; Moñino, A.; Losada, M.A.: Characteristic friction coefficient and scale effects in oscillatory porous flow. Coast. Eng. 56(9), 931–939 (2009)CrossRef
25.
Zurück zum Zitat Mackay, E.; Johanning, L.: Comparison of analytical and numerical solutions for wave interaction with a vertical porous barrier. Ocean Eng. 199, 107032 (2020)CrossRef Mackay, E.; Johanning, L.: Comparison of analytical and numerical solutions for wave interaction with a vertical porous barrier. Ocean Eng. 199, 107032 (2020)CrossRef
26.
Zurück zum Zitat Yu, X.; Chwang, A.T.: Wave motion through porous structures. J. Eng. Mech. 120(5), 989–1008 (1994)CrossRef Yu, X.; Chwang, A.T.: Wave motion through porous structures. J. Eng. Mech. 120(5), 989–1008 (1994)CrossRef
27.
Zurück zum Zitat Kelmanson, M.A.: An integral equation method for the solution of singular slow flow problems. J. Comput. Phys. 51(1), 139–158 (1983)MATHCrossRef Kelmanson, M.A.: An integral equation method for the solution of singular slow flow problems. J. Comput. Phys. 51(1), 139–158 (1983)MATHCrossRef
28.
Zurück zum Zitat Nishad, C.S.; Chandra, A.; Sekhar, G.R.: Flows in slip-patterned micro-channels using boundary element methods. Eng. Anal. Boundary Elem. 73, 95–102 (2016)MathSciNetMATHCrossRef Nishad, C.S.; Chandra, A.; Sekhar, G.R.: Flows in slip-patterned micro-channels using boundary element methods. Eng. Anal. Boundary Elem. 73, 95–102 (2016)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Hsu, T.W.; Tsai, L.H.; Huang, Y.T.: Bragg scattering of water waves by multiply composite artificial bars. Coast. Eng. J. 45(02), 235–253 (2003)CrossRef Hsu, T.W.; Tsai, L.H.; Huang, Y.T.: Bragg scattering of water waves by multiply composite artificial bars. Coast. Eng. J. 45(02), 235–253 (2003)CrossRef
30.
Zurück zum Zitat Zeng, H.; Qin, B.; Zhang, J.: Optimal collocation of Bragg breakwaters with rectangular bars on sloping seabed for Bragg resonant reflection by long waves. Ocean Eng. 130, 156–165 (2017)CrossRef Zeng, H.; Qin, B.; Zhang, J.: Optimal collocation of Bragg breakwaters with rectangular bars on sloping seabed for Bragg resonant reflection by long waves. Ocean Eng. 130, 156–165 (2017)CrossRef
31.
Zurück zum Zitat Bailard, J.A.; DeVries, J.W.; Kirby, J.T.: Considerations in using Bragg reflection for storm erosion protection. J. Waterw. Port Coast. Ocean Eng. 118(1), 62–74 (1992)CrossRef Bailard, J.A.; DeVries, J.W.; Kirby, J.T.: Considerations in using Bragg reflection for storm erosion protection. J. Waterw. Port Coast. Ocean Eng. 118(1), 62–74 (1992)CrossRef
33.
Zurück zum Zitat Guazzelli, E.; Rey, V.; Belzons, M.: Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301–317 (1992)CrossRef Guazzelli, E.; Rey, V.; Belzons, M.: Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301–317 (1992)CrossRef
34.
Zurück zum Zitat Vijay, K.G.; Sahoo, T.; Datta, R.: Wave-induced responses of a floating structure near a wall in the presence of permeable plates. Coast. Eng. J. 62(1), 35–52 (2020)CrossRef Vijay, K.G.; Sahoo, T.; Datta, R.: Wave-induced responses of a floating structure near a wall in the presence of permeable plates. Coast. Eng. J. 62(1), 35–52 (2020)CrossRef
35.
Zurück zum Zitat Mei, C.C.; Hara, T.; Naciri, M.: Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147–162 (1988)MATHCrossRef Mei, C.C.; Hara, T.; Naciri, M.: Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147–162 (1988)MATHCrossRef
36.
Zurück zum Zitat Belzons, M.; Rey, V.; Guazzelli, E.: Subharmonic Bragg resonance for surface water waves. Europhys. Lett. 16(2), 189–194 (1991)CrossRef Belzons, M.; Rey, V.; Guazzelli, E.: Subharmonic Bragg resonance for surface water waves. Europhys. Lett. 16(2), 189–194 (1991)CrossRef
37.
Zurück zum Zitat Kirby, J.T.; Anton, J.P.: Bragg reflection of waves by artificial bars. In: Coastal Engineering Proceedings, pp. 757–768 (1990) Kirby, J.T.; Anton, J.P.: Bragg reflection of waves by artificial bars. In: Coastal Engineering Proceedings, pp. 757–768 (1990)
38.
Zurück zum Zitat Venkateswarlu, V.; Karmakar, D.: Gravity wave trapping by series of horizontally stratified wave absorbers away from seawall. J. Offshore Mech. Arct. Eng. 142(6), 061201–061213 (2020)CrossRef Venkateswarlu, V.; Karmakar, D.: Gravity wave trapping by series of horizontally stratified wave absorbers away from seawall. J. Offshore Mech. Arct. Eng. 142(6), 061201–061213 (2020)CrossRef
39.
Zurück zum Zitat Losada, I.J.; Losada, M.A.; Baquerizo, A.: An analytical method to evaluate the efficiency of porous screens as wave dampers. Appl. Ocean Res. 15(4), 207–215 (1993)CrossRef Losada, I.J.; Losada, M.A.; Baquerizo, A.: An analytical method to evaluate the efficiency of porous screens as wave dampers. Appl. Ocean Res. 15(4), 207–215 (1993)CrossRef
Metadaten
Titel
Scattering of Gravity Waves by Multiple Submerged Rubble-Mound Breakwaters
verfasst von
K. G. Vijay
V. Venkateswarlu
D. Karmakar
Publikationsdatum
18.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 10/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04767-1

Weitere Artikel der Ausgabe 10/2020

Arabian Journal for Science and Engineering 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.