Skip to main content
Erschienen in: Wireless Networks 7/2022

25.06.2022 | Original Paper

Secure energy aware routing protocol for trust management using enhanced Dempster Shafer evidence model in multi-hop UWAN

verfasst von: Surya Narayan Mahapatra, Binod Kumar Singh, Vinay Kumar

Erschienen in: Wireless Networks | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, underwater wireless ad hoc networks (UWAN) are widely used in enormous applications. At the same time, UWAN faced many security issues, like energy leaks. The energy hole will make the network lifetime end soon. However, most existing underwater research has not taken security as serious threat. This article aims to provide a new secure data transmission scheme in UWAN, in which the management and deployment of UWAN is typically done by a trusted authority. The proposed Cluster Tree Enhanced Dempster Shafer based Bidirectional Butterfly Optimization algorithm (CT-EDS-BBO) will be divided into three phases. Initially, the cluster-based tree routing protocol designed for cluster formation, CH selection process, and routing process establishment. In the second phase, the Enhanced Dempster Shafer Evidence Theory uses the fusion rule to evaluate the trust value for each node, which is used to determine the security of each node and to detect the Malicious Node. Finally, the Bidirectional Butterfly Optimization algorithm model is designed to avoid the energy hole issue and to allocate a routing channel for secure data transmission over UWAN. The results obtained from simulation analysis demonstrate that the proposed CT-EDS-BBO has observable benefits over the conventional methods with a Packet Delivery Ratio of 90%, energy consumption of 0.14 J, a network lifetime of 732 s for 200 rounds, and an end-to-end delay of 0.12 s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kuzminykh, I., Carlsson, A., Yevdokymenko, M., & Sokolov, V. (2019). Investigation of the IoT device lifetime with secure data transmission. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), Internet of things, smart spaces, and next generation networks and systems (pp. 16–27). Cham: Springer.CrossRef Kuzminykh, I., Carlsson, A., Yevdokymenko, M., & Sokolov, V. (2019). Investigation of the IoT device lifetime with secure data transmission. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), Internet of things, smart spaces, and next generation networks and systems (pp. 16–27). Cham: Springer.CrossRef
2.
Zurück zum Zitat Elhoseny, M., & Shankar, K. (2019). Reliable data transmission model for mobile ad hoc network using signcryption technique. IEEE Transactions on Reliability, 69(3), 1077–1086.CrossRef Elhoseny, M., & Shankar, K. (2019). Reliable data transmission model for mobile ad hoc network using signcryption technique. IEEE Transactions on Reliability, 69(3), 1077–1086.CrossRef
3.
Zurück zum Zitat Han, G., He, Y., Jiang, J., Wang, N., Guizani, M., & Ansere, J. A. (2019). A synergetic trust model based on SVM in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 68(11), 11239–11247.CrossRef Han, G., He, Y., Jiang, J., Wang, N., Guizani, M., & Ansere, J. A. (2019). A synergetic trust model based on SVM in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 68(11), 11239–11247.CrossRef
4.
Zurück zum Zitat Babaeer, H. A., & Al-Ahmadi, S. A. (2020). Efficient and secure data transmission and sinkhole detection in a multi-clustering wireless sensor network based on homomorphic encryption and watermarking. IEEE Access, 8, 92098–92109. Babaeer, H. A., & Al-Ahmadi, S. A. (2020). Efficient and secure data transmission and sinkhole detection in a multi-clustering wireless sensor network based on homomorphic encryption and watermarking. IEEE Access, 8, 92098–92109.
5.
Zurück zum Zitat Gomathi, R. M., & Manickam, J. M. L. (2019). Energy efficient static node selection in underwater acoustic wireless sensor network. Wireless Personal Communications, 107(2), 709–727.CrossRef Gomathi, R. M., & Manickam, J. M. L. (2019). Energy efficient static node selection in underwater acoustic wireless sensor network. Wireless Personal Communications, 107(2), 709–727.CrossRef
6.
Zurück zum Zitat Yang, G., Dai, L., Si, G., Wang, S., & Wang, S. (2019). Challenges and security issues in underwater wireless sensor networks. Procedia Computer Science, 147, 210–216.CrossRef Yang, G., Dai, L., Si, G., Wang, S., & Wang, S. (2019). Challenges and security issues in underwater wireless sensor networks. Procedia Computer Science, 147, 210–216.CrossRef
7.
Zurück zum Zitat Rao, P. V., Varma, N. M. K., & Sudhakar, R. (2020). A systematic survey on software-defined networks, routing protocols and security infrastructure for underwater wireless sensor networks (UWSNs). In P. Krishna & M. S. Obaidat (Eds.), emerging research in data engineering systems and computer communications (pp. 551–559). Singapore: Springer. Rao, P. V., Varma, N. M. K., & Sudhakar, R. (2020). A systematic survey on software-defined networks, routing protocols and security infrastructure for underwater wireless sensor networks (UWSNs). In P. Krishna & M. S. Obaidat (Eds.), emerging research in data engineering systems and computer communications (pp. 551–559). Singapore: Springer.
8.
Zurück zum Zitat Sun, S., Chen, D., Liu, N., Huang, X., & Yang, Q. (2021). Energy-saving and efficient underwater wireless sensor network security data aggregation model. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), International conference on machine learning and big data analytics for IoT security and privacy (pp. 211–216). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-62746-1_31CrossRef Sun, S., Chen, D., Liu, N., Huang, X., & Yang, Q. (2021). Energy-saving and efficient underwater wireless sensor network security data aggregation model. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), International conference on machine learning and big data analytics for IoT security and privacy (pp. 211–216). Cham: Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-030-62746-1_​31CrossRef
9.
Zurück zum Zitat Mathapati, M., Kumaran, T. S., Muruganandham, A., & Mathivanan, M. (2021). Secure routing scheme with multi-dimensional trust evaluation for wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6047–6055.CrossRef Mathapati, M., Kumaran, T. S., Muruganandham, A., & Mathivanan, M. (2021). Secure routing scheme with multi-dimensional trust evaluation for wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6047–6055.CrossRef
10.
Zurück zum Zitat Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal, 6(2), 3831–3839.CrossRef Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal, 6(2), 3831–3839.CrossRef
11.
Zurück zum Zitat Sharma, T. K., Sahoo, A. K., & Goyal, P. (2021). Bidirectional butterfly optimization algorithm and engineering applications. Materials Today: Proceedings, 34, 736–741. Sharma, T. K., Sahoo, A. K., & Goyal, P. (2021). Bidirectional butterfly optimization algorithm and engineering applications. Materials Today: Proceedings, 34, 736–741.
13.
Zurück zum Zitat Shobana, M., Sabitha, R., & Karthik, S. (2021). Cluster-based systematic data aggregation model (CSDAM) for real-time data processing in large-scale WSN. Wireless Personal Communications, 117(4), 2865–2883.CrossRef Shobana, M., Sabitha, R., & Karthik, S. (2021). Cluster-based systematic data aggregation model (CSDAM) for real-time data processing in large-scale WSN. Wireless Personal Communications, 117(4), 2865–2883.CrossRef
14.
Zurück zum Zitat Jiang, J., Zhu, X., Han, G., Guizani, M., & Shu, L. (2020). A dynamic trust evaluation and update mechanism based on C4. 5 decision tree in underwater wireless sensor networks. IEEE Transactions on Vehicular Technology, 69(8), 9031–9040.CrossRef Jiang, J., Zhu, X., Han, G., Guizani, M., & Shu, L. (2020). A dynamic trust evaluation and update mechanism based on C4. 5 decision tree in underwater wireless sensor networks. IEEE Transactions on Vehicular Technology, 69(8), 9031–9040.CrossRef
15.
Zurück zum Zitat Su, Y., Mal, S., Jin, Z., Fu, X., Li, Y., & Liu, X. (2020, October). A trust model for underwater acoustic sensor networks based on fast link quality assessment. In Global Oceans 2020: Singapore–US Gulf Coast , IEEE 1–6. Su, Y., Mal, S., Jin, Z., Fu, X., Li, Y., & Liu, X. (2020, October). A trust model for underwater acoustic sensor networks based on fast link quality assessment. In Global Oceans 2020: Singapore–US Gulf Coast , IEEE 1–6.
16.
Zurück zum Zitat Chen, Y., Tang, Y., Fang, X., Wan, L., Tao, Y., & Xu, X. (2021). PB-ACR: Node payload balanced ant colony optimal cooperative routing for multi-hop underwater acoustic sensor networks. IEEE Access, 9, 57165–57178.CrossRef Chen, Y., Tang, Y., Fang, X., Wan, L., Tao, Y., & Xu, X. (2021). PB-ACR: Node payload balanced ant colony optimal cooperative routing for multi-hop underwater acoustic sensor networks. IEEE Access, 9, 57165–57178.CrossRef
17.
Zurück zum Zitat Chen, Y., Zhu, J., Wan, L., Huang, S., Zhang, X., & Xu, X. (2020). ACOA-AFSA fusion dynamic coded cooperation routing for different scale multi-hop underwater acoustic sensor networks. IEEE Access, 8, 186773–186788.CrossRef Chen, Y., Zhu, J., Wan, L., Huang, S., Zhang, X., & Xu, X. (2020). ACOA-AFSA fusion dynamic coded cooperation routing for different scale multi-hop underwater acoustic sensor networks. IEEE Access, 8, 186773–186788.CrossRef
18.
Zurück zum Zitat Priyadarshini, R. R., & Sivakumar, N. (2020). Relay selection approach in underwater acoustic WSNs using Bi-Partite graph. Wireless Personal Communications, 111(1), 643–660.CrossRef Priyadarshini, R. R., & Sivakumar, N. (2020). Relay selection approach in underwater acoustic WSNs using Bi-Partite graph. Wireless Personal Communications, 111(1), 643–660.CrossRef
19.
Zurück zum Zitat Narmeen, R., Ahmad, I., Kaleem, Z., Mughal, U. A., Da Costa, D. B., & Muhaidat, S. (2021). Shortest propagation delay-based relay selection for underwater acoustic sensor networks. IEEE Access, 9, 37923–37935.CrossRef Narmeen, R., Ahmad, I., Kaleem, Z., Mughal, U. A., Da Costa, D. B., & Muhaidat, S. (2021). Shortest propagation delay-based relay selection for underwater acoustic sensor networks. IEEE Access, 9, 37923–37935.CrossRef
20.
Zurück zum Zitat Yu, W., Chen, Y., Wan, L., Zhang, X., Zhu, P., & Xu, X. (2020). An energy optimization clustering scheme for multi-hop underwater acoustic cooperative sensor networks. IEEE Access, 8, 89171–89184.CrossRef Yu, W., Chen, Y., Wan, L., Zhang, X., Zhu, P., & Xu, X. (2020). An energy optimization clustering scheme for multi-hop underwater acoustic cooperative sensor networks. IEEE Access, 8, 89171–89184.CrossRef
21.
Zurück zum Zitat Zhang, M., & Cai, W. (2020). Energy-efficient depth based probabilistic routing within 2-Hop neighborhood for underwater sensor networks. IEEE Sensors Letters, 4(6), 1–4.CrossRef Zhang, M., & Cai, W. (2020). Energy-efficient depth based probabilistic routing within 2-Hop neighborhood for underwater sensor networks. IEEE Sensors Letters, 4(6), 1–4.CrossRef
23.
Zurück zum Zitat Muthukkumar, R., & Manimegalai, D. (2021). Secured transmission using trust strategy-based dynamic Bayesian game in underwater acoustic sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2585–2600.CrossRef Muthukkumar, R., & Manimegalai, D. (2021). Secured transmission using trust strategy-based dynamic Bayesian game in underwater acoustic sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2585–2600.CrossRef
24.
Zurück zum Zitat Wang, J., Qin, Y., Tang, Z., & Zhang, P. (2020). Software-defined cyber-energy secure underwater wireless power transfer. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2(1), 21–31.CrossRef Wang, J., Qin, Y., Tang, Z., & Zhang, P. (2020). Software-defined cyber-energy secure underwater wireless power transfer. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2(1), 21–31.CrossRef
25.
Zurück zum Zitat Zhang, J., Cai, M., Han, G., Qian, Y., & Shu, L. (2020). Cellular clustering-based interference-aware data transmission protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 69(3), 3217–3230.CrossRef Zhang, J., Cai, M., Han, G., Qian, Y., & Shu, L. (2020). Cellular clustering-based interference-aware data transmission protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 69(3), 3217–3230.CrossRef
26.
Zurück zum Zitat Jiajia, J., Xianquan, W., Fajie, D., Xiao, F., Chunyue, L., & Zhongbo, S. (2020). A basic bio-inspired camouflage communication frame design and applications for secure underwater communication among military underwater platforms. IEEE Access, 8, 24927–24940.CrossRef Jiajia, J., Xianquan, W., Fajie, D., Xiao, F., Chunyue, L., & Zhongbo, S. (2020). A basic bio-inspired camouflage communication frame design and applications for secure underwater communication among military underwater platforms. IEEE Access, 8, 24927–24940.CrossRef
27.
Zurück zum Zitat Guo, Y., Liu, X., & Chen, C. (2019). Research on hybrid cooperative charging scheduling schemes in underwater sensor networks. IEEE Access, 7, 156452–156462.CrossRef Guo, Y., Liu, X., & Chen, C. (2019). Research on hybrid cooperative charging scheduling schemes in underwater sensor networks. IEEE Access, 7, 156452–156462.CrossRef
28.
Zurück zum Zitat Kuang, Y., Sun, J., Gan, X., Gong, D., Liu, Z., & Zha, M. (2021). Dynamic multi-objective cooperative coevolutionary scheduling for mobile underwater wireless sensor networks. Computers & Industrial Engineering, 156, 107229.CrossRef Kuang, Y., Sun, J., Gan, X., Gong, D., Liu, Z., & Zha, M. (2021). Dynamic multi-objective cooperative coevolutionary scheduling for mobile underwater wireless sensor networks. Computers & Industrial Engineering, 156, 107229.CrossRef
29.
Zurück zum Zitat Su, Y., Zhou, Z., Jin, Z., & Yang, Q. (2020). A joint relay selection and power allocation MAC protocol for underwater acoustic sensor network. IEEE access., 8, 65197–65210.CrossRef Su, Y., Zhou, Z., Jin, Z., & Yang, Q. (2020). A joint relay selection and power allocation MAC protocol for underwater acoustic sensor network. IEEE access., 8, 65197–65210.CrossRef
30.
Zurück zum Zitat Khan, A., Javaid, N., Ali, I., Anisi, M. H., Rahman, A. U., Bhatti, N., Zia, M., & Mahmood, H. (2017). An energy efficient interference-aware routing protocol for underwater WSNs. KSII Transactions on Internet and Information Systems, 11(10), 4844–4864. Khan, A., Javaid, N., Ali, I., Anisi, M. H., Rahman, A. U., Bhatti, N., Zia, M., & Mahmood, H. (2017). An energy efficient interference-aware routing protocol for underwater WSNs. KSII Transactions on Internet and Information Systems, 11(10), 4844–4864.
31.
Zurück zum Zitat Ghoreyshi, S. M., Shahrabi, A., Boutaleb, T., & Khalily, M. (2019). Mobile data gathering with hop-constrained clustering in underwater sensor networks. IEEE Access, 7, 21118–21132.CrossRef Ghoreyshi, S. M., Shahrabi, A., Boutaleb, T., & Khalily, M. (2019). Mobile data gathering with hop-constrained clustering in underwater sensor networks. IEEE Access, 7, 21118–21132.CrossRef
32.
Zurück zum Zitat Dini, G., & Lo Duca, A. (2012). A secure communication suite for underwater acoustic sensor networks. Sensors, 12(11), 15133–15158.CrossRef Dini, G., & Lo Duca, A. (2012). A secure communication suite for underwater acoustic sensor networks. Sensors, 12(11), 15133–15158.CrossRef
33.
Zurück zum Zitat Kaliappan, M., & Paramasivan, B. (2015). Enhancing secure routing in mobile ad hoc networks using a dynamic bayesian signalling game model. Computers & Electrical Engineering, 41, 301–313.CrossRef Kaliappan, M., & Paramasivan, B. (2015). Enhancing secure routing in mobile ad hoc networks using a dynamic bayesian signalling game model. Computers & Electrical Engineering, 41, 301–313.CrossRef
Metadaten
Titel
Secure energy aware routing protocol for trust management using enhanced Dempster Shafer evidence model in multi-hop UWAN
verfasst von
Surya Narayan Mahapatra
Binod Kumar Singh
Vinay Kumar
Publikationsdatum
25.06.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03021-w

Weitere Artikel der Ausgabe 7/2022

Wireless Networks 7/2022 Zur Ausgabe

Neuer Inhalt