Skip to main content
Erschienen in: Computational Mechanics 1/2015

01.01.2015 | Original Paper

Segment-based vs. element-based integration for mortar methods in computational contact mechanics

verfasst von: Philipp Farah, Alexander Popp, Wolfgang A. Wall

Erschienen in: Computational Mechanics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mortar finite element methods provide a very convenient and powerful discretization framework for geometrically nonlinear applications in computational contact mechanics, because they allow for a variationally consistent treatment of contact conditions (mesh tying, non-penetration, frictionless or frictional sliding) despite the fact that the underlying contact surface meshes are non-matching and possibly also geometrically non-conforming. However, one of the major issues with regard to mortar methods is the design of adequate numerical integration schemes for the resulting interface coupling terms, i.e. curve integrals for 2D contact problems and surface integrals for 3D contact problems. The way how mortar integration is performed crucially influences the accuracy of the overall numerical procedure as well as the computational efficiency of contact evaluation. Basically, two different types of mortar integration schemes, which will be termed as segment-based integration and element-based integration here, can be found predominantly in the literature. While almost the entire existing literature focuses on either of the two mentioned mortar integration schemes without questioning this choice, the intention of this paper is to provide a comprehensive and unbiased comparison. The theoretical aspects covered here include the choice of integration rule, the treatment of boundaries of the contact zone, higher-order interpolation and frictional sliding. Moreover, a new hybrid scheme is proposed, which beneficially combines the advantages of segment-based and element-based mortar integration. Several numerical examples are presented for a detailed and critical evaluation of the overall performance of the different schemes within several well-known benchmark problems of computational contact mechanics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375CrossRefMathSciNetMATH Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375CrossRefMathSciNetMATH
2.
Zurück zum Zitat Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4-8):263–271 Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4-8):263–271
3.
Zurück zum Zitat Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications. Pitman/Wiley, London/New York, pp 13–51 Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications. Pitman/Wiley, London/New York, pp 13–51
4.
Zurück zum Zitat Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173CrossRefMATH Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173CrossRefMATH
5.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375CrossRefMathSciNetMATH Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375CrossRefMathSciNetMATH
6.
Zurück zum Zitat De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300MATH De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300MATH
7.
Zurück zum Zitat De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123CrossRefMathSciNet De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123CrossRefMathSciNet
8.
Zurück zum Zitat Dickopf T, Krause R (2009) Efficient simulation of multi-body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int J Numer Methods Eng 77(13):1834–1862CrossRefMathSciNetMATH Dickopf T, Krause R (2009) Efficient simulation of multi-body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int J Numer Methods Eng 77(13):1834–1862CrossRefMathSciNetMATH
9.
Zurück zum Zitat El-Abbasi N, Bathe K-J (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473–1486CrossRef El-Abbasi N, Bathe K-J (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473–1486CrossRef
10.
Zurück zum Zitat Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244CrossRefMATH Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244CrossRefMATH
11.
Zurück zum Zitat Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036CrossRefMathSciNetMATH Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036CrossRefMathSciNetMATH
12.
Zurück zum Zitat Foley J (1997) Computer graphics: principles and practice. Addison-Wesley, Reading Foley J (1997) Computer graphics: principles and practice. Addison-Wesley, Reading
13.
Zurück zum Zitat Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH
14.
Zurück zum Zitat Gross D, Hauger W, Schröder J, Wall WA, Bonet J (2011) Engineering mechanics 2. Addison-Wesley, Menlo ParkCrossRefMATH Gross D, Hauger W, Schröder J, Wall WA, Bonet J (2011) Engineering mechanics 2. Addison-Wesley, Menlo ParkCrossRefMATH
15.
Zurück zum Zitat Hager C, Wohlmuth BI (2009) Nonlinear complementarity functions for plasticity problems with frictional contact. Comput Methods Appl Mech Eng 198:3411–3427CrossRefMathSciNetMATH Hager C, Wohlmuth BI (2009) Nonlinear complementarity functions for plasticity problems with frictional contact. Comput Methods Appl Mech Eng 198:3411–3427CrossRefMathSciNetMATH
16.
Zurück zum Zitat Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semi-smooth Newton method. SIAM J Optim 13(3):865–888CrossRefMathSciNet Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semi-smooth Newton method. SIAM J Optim 13(3):865–888CrossRefMathSciNet
17.
Zurück zum Zitat Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29):3147–3166CrossRefMATH Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29):3147–3166CrossRefMATH
18.
Zurück zum Zitat Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J Sci Comput 30(2):572–596CrossRefMathSciNetMATH Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J Sci Comput 30(2):572–596CrossRefMathSciNetMATH
19.
Zurück zum Zitat Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197(33–40):3045–3056CrossRefMathSciNetMATH Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197(33–40):3045–3056CrossRefMathSciNetMATH
20.
Zurück zum Zitat Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45(5):569–599CrossRefMathSciNetMATH Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45(5):569–599CrossRefMathSciNetMATH
21.
Zurück zum Zitat Kuhl D, Ramm E (1999) Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput Methods Appl Mech Eng 178(3–4):343–366CrossRefMathSciNetMATH Kuhl D, Ramm E (1999) Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput Methods Appl Mech Eng 178(3–4):343–366CrossRefMathSciNetMATH
22.
Zurück zum Zitat Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinMATH Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinMATH
23.
24.
Zurück zum Zitat McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547CrossRefMathSciNetMATH McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547CrossRefMathSciNetMATH
26.
Zurück zum Zitat Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554CrossRefMathSciNetMATH Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554CrossRefMathSciNetMATH
27.
Zurück zum Zitat Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82:99–113MathSciNetMATH Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82:99–113MathSciNetMATH
28.
Zurück zum Zitat Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381CrossRefMathSciNetMATH Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381CrossRefMathSciNetMATH
29.
Zurück zum Zitat Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391CrossRefMathSciNetMATH Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391CrossRefMathSciNetMATH
30.
Zurück zum Zitat Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465CrossRefMathSciNetMATH Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465CrossRefMathSciNetMATH
31.
Zurück zum Zitat Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34:B421–B446CrossRefMathSciNetMATH Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34:B421–B446CrossRefMathSciNetMATH
32.
Zurück zum Zitat Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3d contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80CrossRefMathSciNetMATH Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3d contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80CrossRefMathSciNetMATH
33.
Zurück zum Zitat Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods in Eng 59(3):315–336CrossRefMATH Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods in Eng 59(3):315–336CrossRefMATH
34.
Zurück zum Zitat Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319CrossRefMATH Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319CrossRefMATH
35.
Zurück zum Zitat Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRefMathSciNetMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRefMathSciNetMATH
36.
Zurück zum Zitat Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45-47):4891–4913 Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45-47):4891–4913
37.
Zurück zum Zitat Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6–8):555–566CrossRefMathSciNetMATH Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6–8):555–566CrossRefMathSciNetMATH
39.
Zurück zum Zitat Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87(6):593–616CrossRefMATH Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87(6):593–616CrossRefMATH
40.
Zurück zum Zitat Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43(5):757–792CrossRefMathSciNetMATH Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43(5):757–792CrossRefMathSciNetMATH
41.
Zurück zum Zitat Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180CrossRefMathSciNetMATH Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180CrossRefMathSciNetMATH
42.
Zurück zum Zitat Sommariva A, Vianello M (2007) Product Gauss cubature over polygons based on green’s integration formula. BIT Numer Math 47:441–453CrossRefMathSciNetMATH Sommariva A, Vianello M (2007) Product Gauss cubature over polygons based on green’s integration formula. BIT Numer Math 47:441–453CrossRefMathSciNetMATH
43.
Zurück zum Zitat Sommariva A, Vianello M (2009) Gauss-green cubature and moment computation over arbitrary geometries. J Comput Appl Math 231:886–896CrossRefMathSciNetMATH Sommariva A, Vianello M (2009) Gauss-green cubature and moment computation over arbitrary geometries. J Comput Appl Math 231:886–896CrossRefMathSciNetMATH
44.
Zurück zum Zitat Sudhakar Y, Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef Sudhakar Y, Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef
45.
Zurück zum Zitat Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(912):1100–1112CrossRefMathSciNetMATH Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(912):1100–1112CrossRefMathSciNetMATH
46.
Zurück zum Zitat Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128CrossRefMathSciNet Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128CrossRefMathSciNet
47.
Zurück zum Zitat Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873CrossRefMathSciNetMATH Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873CrossRefMathSciNetMATH
48.
Zurück zum Zitat Tur M, Giner E, Fuenmayor FJ, Wriggers P (2012) 2D contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14CrossRefMathSciNet Tur M, Giner E, Fuenmayor FJ, Wriggers P (2012) 2D contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14CrossRefMathSciNet
49.
Zurück zum Zitat Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012CrossRefMathSciNetMATH Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012CrossRefMathSciNetMATH
50.
Zurück zum Zitat Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734CrossRefMathSciNetMATH Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734CrossRefMathSciNetMATH
51.
Zurück zum Zitat Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Comput Mech 49:735–747CrossRefMathSciNetMATH Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Comput Mech 49:735–747CrossRefMathSciNetMATH
52.
Zurück zum Zitat Xiao Z, Gimbutas H (2010) A numerical algorithm for the construction of efficient quadratures in two and higher dimensions. Comput Math Appl 59:663–676CrossRefMathSciNetMATH Xiao Z, Gimbutas H (2010) A numerical algorithm for the construction of efficient quadratures in two and higher dimensions. Comput Math Appl 59:663–676CrossRefMathSciNetMATH
53.
Zurück zum Zitat Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41(2):189–205 Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41(2):189–205
54.
Zurück zum Zitat Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197(6–8):756–772 Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197(6–8):756–772
55.
Zurück zum Zitat Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225CrossRefMathSciNetMATH Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225CrossRefMathSciNetMATH
56.
Zurück zum Zitat Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(48):497–515CrossRefMATH Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(48):497–515CrossRefMATH
Metadaten
Titel
Segment-based vs. element-based integration for mortar methods in computational contact mechanics
verfasst von
Philipp Farah
Alexander Popp
Wolfgang A. Wall
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1093-2

Weitere Artikel der Ausgabe 1/2015

Computational Mechanics 1/2015 Zur Ausgabe

Neuer Inhalt