Skip to main content

2020 | OriginalPaper | Buchkapitel

Selective Lithium Recovery from Brines Using Hydrothermally Treated Titania Slag

verfasst von : Rajashekhar Marthi, York R. Smith

Erschienen in: Rare Metal Technology 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ion-exchange adsorbents such as delithiated lithium titanium oxides (LTOs) are highly effective for selective lithium adsorption from brines resources. In this work, we have synthesized LTO from waste titania slag and immobilized on a diatomaceous earth (DE) support. Titania slag was hydrothermally treated in alkaline solution to remove slag impurities. Acidic leaching followed by hydrolysis was performed to dissolve impurities and immobilize TiO2 on DE. Subsequent solid-state synthesis with Li2CO3 resulted in the formation of LTO. Batch adsorption studies show that around 99% of lithium was adsorbed from a buffered 50 ppm Li. Thermodynamic and kinetic studies show the lithium adsorption to be an endothermic, chemisorption process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Production D, Columbia B, Relations NT (2018) U.S. Geological Survey, no 703, February 2019. Mineral Commodity Summaries, pp 2018–2019 Production D, Columbia B, Relations NT (2018) U.S. Geological Survey, no 703, February 2019. Mineral Commodity Summaries, pp 2018–2019
2.
Zurück zum Zitat Speirs J, Contestabile M, Houari Y, Gross R (2014) The future of lithium availability for electric vehicle batteries. Renew Sustain Energy Rev 35:183–193CrossRef Speirs J, Contestabile M, Houari Y, Gross R (2014) The future of lithium availability for electric vehicle batteries. Renew Sustain Energy Rev 35:183–193CrossRef
3.
Zurück zum Zitat Choubey PK, Seuk Kim M, Srivastava RR, Lee J, Lee J-Y (2016) Advance review on the exploitation of the prominent energy-storage element Lithium. Part I: from mineral and brine resources. Miner Eng 89:119–137CrossRef Choubey PK, Seuk Kim M, Srivastava RR, Lee J, Lee J-Y (2016) Advance review on the exploitation of the prominent energy-storage element Lithium. Part I: from mineral and brine resources. Miner Eng 89:119–137CrossRef
4.
Zurück zum Zitat Munk LA, Bradley D (2016) Lithium brines: a global perspective. January 2016:339–365 Munk LA, Bradley D (2016) Lithium brines: a global perspective. January 2016:339–365
5.
Zurück zum Zitat Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208CrossRef Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208CrossRef
6.
Zurück zum Zitat Shi XC, Zhang ZB, Zhou DF, Zhang LF, Chen BZ, Yu LL (2013) Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans Nonferrous Met Soc China (English Ed.) 23(1):253–259 Shi XC, Zhang ZB, Zhou DF, Zhang LF, Chen BZ, Yu LL (2013) Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans Nonferrous Met Soc China (English Ed.) 23(1):253–259
7.
Zurück zum Zitat Wang S et al (2016) Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption. RSC Adv 6(104):102608–102616CrossRef Wang S et al (2016) Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption. RSC Adv 6(104):102608–102616CrossRef
8.
Zurück zum Zitat Moazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bull 61:70–75CrossRef Moazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bull 61:70–75CrossRef
9.
Zurück zum Zitat Zhang L-Y, Liu Y-W, Huang L, Li N (2018) A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation–peptization method. RSC Adv 8(3):1385–1391CrossRef Zhang L-Y, Liu Y-W, Huang L, Li N (2018) A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation–peptization method. RSC Adv 8(3):1385–1391CrossRef
10.
Zurück zum Zitat Middlemas S, Fang ZZ, Fan P (2013) A new method for production of titanium dioxide pigment. Hydrometallurgy 131–132:107–113CrossRef Middlemas S, Fang ZZ, Fan P (2013) A new method for production of titanium dioxide pigment. Hydrometallurgy 131–132:107–113CrossRef
11.
Zurück zum Zitat Tang D, Zhou D, Zhou J, Zhang P, Zhang L, Xia Y (2015) Preparation of H2TiO3-lithium adsorbent using low-grade titanium slag. Hydrometallurgy 157:90–96CrossRef Tang D, Zhou D, Zhou J, Zhang P, Zhang L, Xia Y (2015) Preparation of H2TiO3-lithium adsorbent using low-grade titanium slag. Hydrometallurgy 157:90–96CrossRef
12.
Zurück zum Zitat Dong H, Jiang T, Guo Y, Chen J, Fan X (2012) Upgrading a Ti-slag by a roast-leach process. Hydrometallurgy 113–114:119–121CrossRef Dong H, Jiang T, Guo Y, Chen J, Fan X (2012) Upgrading a Ti-slag by a roast-leach process. Hydrometallurgy 113–114:119–121CrossRef
13.
Zurück zum Zitat Li A, Wang J, Zhang W, McNaughton R, Anderson S, Zhang X (2016) Sol-gel based TiO2 thin film deposition on frustules towards facile and scalable manufacturing. J Phys Conf Ser 773(1) Li A, Wang J, Zhang W, McNaughton R, Anderson S, Zhang X (2016) Sol-gel based TiO2 thin film deposition on frustules towards facile and scalable manufacturing. J Phys Conf Ser 773(1)
14.
Zurück zum Zitat Wang B, de Godoi FC, Sun Z, Zeng Q, Zheng S, Frost RL (2015) Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J Colloid Interf Sci 438:204–211CrossRef Wang B, de Godoi FC, Sun Z, Zeng Q, Zheng S, Frost RL (2015) Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J Colloid Interf Sci 438:204–211CrossRef
15.
Zurück zum Zitat Marthi R, Smith YR (2019) Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite. Hydrometallurgy 186:115–125CrossRef Marthi R, Smith YR (2019) Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite. Hydrometallurgy 186:115–125CrossRef
16.
Zurück zum Zitat Zhang Y et al (2016) A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chem Eng J 286:517–527CrossRef Zhang Y et al (2016) A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chem Eng J 286:517–527CrossRef
17.
Zurück zum Zitat Zhang W, Zhu Z, Cheng CY (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108(3–4):177–188CrossRef Zhang W, Zhu Z, Cheng CY (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108(3–4):177–188CrossRef
18.
Zurück zum Zitat Bouna L et al (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52(3):301–311CrossRef Bouna L et al (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52(3):301–311CrossRef
19.
Zurück zum Zitat Hong HJ et al (2018) Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem Eng J 337(December 2017):455–461 Hong HJ et al (2018) Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem Eng J 337(December 2017):455–461
20.
Zurück zum Zitat Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39 Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39
21.
Zurück zum Zitat Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18(12):1501–1507CrossRef Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18(12):1501–1507CrossRef
Metadaten
Titel
Selective Lithium Recovery from Brines Using Hydrothermally Treated Titania Slag
verfasst von
Rajashekhar Marthi
York R. Smith
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36758-9_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.