Skip to main content
Erschienen in: Natural Computing 2/2012

01.06.2012

Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models

verfasst von: Vamsi Kundeti, Sanguthevar Rajasekaran

Erschienen in: Natural Computing | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is \(\Upomega(\frac{\log(n)}{\log(\log(n))})\) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing \(\Uptheta(\frac{\log(n)}{\log(\log(n))})\) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using \(\Uptheta(\alpha+\beta)\) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94, 2009)—which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) . Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235–253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is \(\Uptheta(\log(n))\) and is optimal on the probabilistic tile assembly model (PTAM)—n being an upper bound on the dimensions of a rectangle.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Phd thesis of Winfree (1998) [http://resolver.caltech.edu/CaltechETD:etd-05192003-110022].
 
Literatur
Zurück zum Zitat Adleman L, Cheng Q, Goel A, Huang M (2001) Running time and program size for self-assembled squares. In: annual ACM symposium on theory of computing. ACM, New York, pp 740–748 Adleman L, Cheng Q, Goel A, Huang M (2001) Running time and program size for self-assembled squares. In: annual ACM symposium on theory of computing. ACM, New York, pp 740–748
Zurück zum Zitat Aggarwal G, Cheng QI, Goldwasser MH, Kao M, De Espanes PM, Schweller RT (2005) Complexities for generalized models of self-assembly. SIAM J Comput 34(6):1493–1515MathSciNetMATHCrossRef Aggarwal G, Cheng QI, Goldwasser MH, Kao M, De Espanes PM, Schweller RT (2005) Complexities for generalized models of self-assembly. SIAM J Comput 34(6):1493–1515MathSciNetMATHCrossRef
Zurück zum Zitat Becker F, Remila E, Rapaport I (2006) Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical. Springer Becker F, Remila E, Rapaport I (2006) Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical. Springer
Zurück zum Zitat Chandran H, Gopalkrishnan N, Reif J (2009) The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I. ICALP ’09, Springer-Verlag, pp 235–253 Chandran H, Gopalkrishnan N, Reif J (2009) The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I. ICALP ’09, Springer-Verlag, pp 235–253
Zurück zum Zitat Doty D (2009) Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94 Doty D (2009) Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94
Zurück zum Zitat Kao M, Schweller R (2006) Reducing tile complexity for self-assembly through temperature programming. In: Annual ACM-SIAM Symposium on Discrete Algorithms. Miami, pp 571–580 Kao M, Schweller R (2006) Reducing tile complexity for self-assembly through temperature programming. In: Annual ACM-SIAM Symposium on Discrete Algorithms. Miami, pp 571–580
Zurück zum Zitat Kao M, Schweller R (2008) Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg Kao M, Schweller R (2008) Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg
Zurück zum Zitat Rothemund PWK, Winfree E (2000) Program-size complexity of self-assembled squares. In: ACM symposium on theory of computation (STOC). ACM, New York, pp 459–468 Rothemund PWK, Winfree E (2000) Program-size complexity of self-assembled squares. In: ACM symposium on theory of computation (STOC). ACM, New York, pp 459–468
Zurück zum Zitat Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol 2(12):e424 Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol 2(12):e424
Zurück zum Zitat Wang H (1962) An unsolvable problem on dominoes. Technical Report BL-30 Wang H (1962) An unsolvable problem on dominoes. Technical Report BL-30
Metadaten
Titel
Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models
verfasst von
Vamsi Kundeti
Sanguthevar Rajasekaran
Publikationsdatum
01.06.2012
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2012
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-012-9313-1

Weitere Artikel der Ausgabe 2/2012

Natural Computing 2/2012 Zur Ausgabe

Premium Partner