Skip to main content
Erschienen in: Polymer Bulletin 11/2016

19.03.2016 | Original Paper

Self-healing properties of epoxy resins with poly(ε-caprolactone) healing agent

verfasst von: J. Karger-Kocsis

Erschienen in: Polymer Bulletin | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermally induced healing through thermoplastic poly(ε-caprolactone) (PCL), dissolved in 12.5, 25, 37.5 and 50 wt%, respectively, in amine-cured epoxy resins (EPs) was studied on compact tension (CT) specimens. Aromatic (hydrogenated diglycidyl ether of bisphenol A-type) and aliphatic (glycerol-triglycidylether) EPs were cured with the same amine (Jeffamine D 230) to receive EPs with different glass transition temperatures (T g). T g values of the parent EPs were lower (T g = 32 °C) and higher (T g = 90 °C), respectively, than the melt temperature (T m ≈ 60 °C) of the PCL. The curing-induced phase separation morphology of PCL was studied by light microcopy. Additional information on the phase structure was deduced from dynamic mechanical analysis. Blending with PCL reduced the T g of the corresponding EPs. Fully broken CT specimens were repeatedly healed at 80 °C which was close to or higher than the actual T g of the EP/PCL blend. It was found that the transition of PCL from disperse to continuous phase depends not only on the PCL amount, but also on the EP type and its curing. EP/PCL systems with semi-interpenetrating network structure (bi-continuous) exhibited markedly higher healing efficiencies compared to those in which PCL was present as disperse phase. The healing efficiency depended also on the temperature difference between the healing temperature and T g of the EP with respect to T m of PCL. When T g > T m then the related difference should be kept small, while for T g < T m the temperature difference should be large to support healing. Accordingly, the segmental mobility within the cross-linked EP network is a key parameter for thermal mending, too.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blaiszik B, Kramer S, Olugebefola S, Moore J, Sottos N, White S (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef Blaiszik B, Kramer S, Olugebefola S, Moore J, Sottos N, White S (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef
2.
Zurück zum Zitat Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43CrossRef Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43CrossRef
3.
Zurück zum Zitat Jud K, Kausch HH (1979) Load transfer through chain molecules after interpenetration at interfaces. Polym Bull 1:697–707CrossRef Jud K, Kausch HH (1979) Load transfer through chain molecules after interpenetration at interfaces. Polym Bull 1:697–707CrossRef
4.
Zurück zum Zitat Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210CrossRef Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210CrossRef
5.
Zurück zum Zitat Tsangouri E, Aggelis D, van Hemlrijck D (2015) Quantifying thermoset polymers healing efficiency: a systematic review of mechanical testing. Prog Polym Sci 49–50:154–174CrossRef Tsangouri E, Aggelis D, van Hemlrijck D (2015) Quantifying thermoset polymers healing efficiency: a systematic review of mechanical testing. Prog Polym Sci 49–50:154–174CrossRef
6.
Zurück zum Zitat Pascault J-P, Williams RJJ (eds) (2010) Epoxy polymers. Wiley-VCH, Weinheim Pascault J-P, Williams RJJ (eds) (2010) Epoxy polymers. Wiley-VCH, Weinheim
7.
Zurück zum Zitat Karger-Kocsis J, Kéki S (2014) Shape memory biodegradable polyesters: concepts of (supra)molecular architecturing. Express Polym Lett 8:397–412CrossRef Karger-Kocsis J, Kéki S (2014) Shape memory biodegradable polyesters: concepts of (supra)molecular architecturing. Express Polym Lett 8:397–412CrossRef
8.
Zurück zum Zitat Siddhamalli SK (2000) Toughening of epoxy/polycaprolactone composites via reaction induced phase separation. Polym Compos 21:846–855CrossRef Siddhamalli SK (2000) Toughening of epoxy/polycaprolactone composites via reaction induced phase separation. Polym Compos 21:846–855CrossRef
9.
Zurück zum Zitat Rotrekl J, Matějka L, Kaprálková L, Zhigunov A, Hromádková J, Kelnar I (2012) Epoxy/PCL nanocomposites: effect of layered silicate on structure and behavior. Express Polym Lett 6:975–986CrossRef Rotrekl J, Matějka L, Kaprálková L, Zhigunov A, Hromádková J, Kelnar I (2012) Epoxy/PCL nanocomposites: effect of layered silicate on structure and behavior. Express Polym Lett 6:975–986CrossRef
10.
Zurück zum Zitat Luo X, Ou R, Eberly DE, Singhal A, Viratyaporn W, Mather PT (2009) A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl Mater Interface 1:612–620CrossRef Luo X, Ou R, Eberly DE, Singhal A, Viratyaporn W, Mather PT (2009) A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl Mater Interface 1:612–620CrossRef
11.
Zurück zum Zitat Fejős M, Molnár K, Karger-Kocsis J (2013) Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus co-continuous morphology. Materials 6:4489–4504CrossRef Fejős M, Molnár K, Karger-Kocsis J (2013) Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus co-continuous morphology. Materials 6:4489–4504CrossRef
12.
Zurück zum Zitat Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Express Polym Lett 2:238–250CrossRef Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Express Polym Lett 2:238–250CrossRef
13.
Zurück zum Zitat Wei H, Yao Y, Liu Y, Leng J (2015) A dual-functional polymeric system combining shape memory with self-healing properties. Compos B 83:7–13CrossRef Wei H, Yao Y, Liu Y, Leng J (2015) A dual-functional polymeric system combining shape memory with self-healing properties. Compos B 83:7–13CrossRef
14.
Zurück zum Zitat Yao Y, Wang J, Lu H, Xu B, Fu Y, Liu Y, Leng J (2016) Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater Struct 25:015021CrossRef Yao Y, Wang J, Lu H, Xu B, Fu Y, Liu Y, Leng J (2016) Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater Struct 25:015021CrossRef
15.
Zurück zum Zitat Tuba F, Khumalo VM, Karger-Kocsis J (2013) Essential work of fracture of poly(ε-caprolactone)/boehmite alumina nanocomposites: effect of surface coating. J Appl Polym Sci 129:2950–2958CrossRef Tuba F, Khumalo VM, Karger-Kocsis J (2013) Essential work of fracture of poly(ε-caprolactone)/boehmite alumina nanocomposites: effect of surface coating. J Appl Polym Sci 129:2950–2958CrossRef
16.
Zurück zum Zitat Varley RJ, Dao B, Pillsbury Ch, Kalista SJ, Jones FR (2014) Low-molecular-weight thermoplastic modifiers as effective healing agents in mendable epoxy networks. J Intell Mater Syst Struct 25:107–117CrossRef Varley RJ, Dao B, Pillsbury Ch, Kalista SJ, Jones FR (2014) Low-molecular-weight thermoplastic modifiers as effective healing agents in mendable epoxy networks. J Intell Mater Syst Struct 25:107–117CrossRef
17.
Zurück zum Zitat Jones AR, Watkins CA, White SR, Sottos NR (2015) Self-healing thermoplastic-toughened epoxy. Polymer 74:254–261CrossRef Jones AR, Watkins CA, White SR, Sottos NR (2015) Self-healing thermoplastic-toughened epoxy. Polymer 74:254–261CrossRef
Metadaten
Titel
Self-healing properties of epoxy resins with poly(ε-caprolactone) healing agent
verfasst von
J. Karger-Kocsis
Publikationsdatum
19.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 11/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1642-2

Weitere Artikel der Ausgabe 11/2016

Polymer Bulletin 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.