Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

13.08.2020 | ORIGINAL ARTICLE

Semantic-based subassembly identification considering non-geometric structure attributes and assembly process factors

verfasst von: Xiaolin Shi, Xitian Tian, Gangfeng Wang, Dongping Zhao, Min Zhang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The generation of sequence planning becomes a difficult task as the number of part increases. As a consequence, dividing the complex product into multiple subassemblies which contain relatively few parts will decrease sequence planning difficulty. In the process of product assembly, semantic knowledge is an important basis for subassembly identification. Therefore, a semantic knowledge-driven subassembly identification framework is proposed. Generating information and knowledge during product design stage can be effectively utilized to become a variety of input constraints in the process of subassembly identification, including non-geometric structure constraints and assembly process constraints. Firstly, an assembly semantic model framework is constructed by mapping among spatial objects, assembly process and assembly relations, which are defined with Web Ontology Language (OWL) assertions. Next, the datum parts can be determined according to assembly directed graph. The influence of non-geometric structure attributes and assembly process factors on the assemblability was quantitatively expressed in semantics, and the characterization values and comprehensive weight value were deduced through Semantics Web Rule Language (SWRL) rules to construct weighted assembly directed graph. Based on this, simplifying weighted assembly directed graph through node merging and assembling is utilized to identify subassembly. Finally, the effectiveness of the framework is verified by transmission subassembly identification. The main contribution is presenting an ontology-based approach for subassembly identification, which can provide a feasible solution for the issue that mathematics-based subassembly identification approaches have great difficulty in explicitly representing assembly experience and knowledge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Demoly F, Yan XT, Eynard B, Rivest L, Gomes S (2011) An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot Comput Integr Manuf 27(1):33–46CrossRef Demoly F, Yan XT, Eynard B, Rivest L, Gomes S (2011) An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot Comput Integr Manuf 27(1):33–46CrossRef
2.
Zurück zum Zitat Ou LM, Xu X (2013) Relationship matrix based automatic assembly sequence generation from a CAD model. Comput Aided Des 45(7):1053–1067CrossRef Ou LM, Xu X (2013) Relationship matrix based automatic assembly sequence generation from a CAD model. Comput Aided Des 45(7):1053–1067CrossRef
3.
Zurück zum Zitat Su Q, Lai SJ (2010) 3D geometric constraint analysis and its application on the spatial assembly sequence planning. Int J Prod Res 48(5):1395–1414MATHCrossRef Su Q, Lai SJ (2010) 3D geometric constraint analysis and its application on the spatial assembly sequence planning. Int J Prod Res 48(5):1395–1414MATHCrossRef
4.
Zurück zum Zitat Lu HJ, Zhen HQ, Mi WJ, Huang YF (2015) A physically based approach with human-machine cooperation concept to generate assembly sequences. Comput Ind Eng 89:213–225CrossRef Lu HJ, Zhen HQ, Mi WJ, Huang YF (2015) A physically based approach with human-machine cooperation concept to generate assembly sequences. Comput Ind Eng 89:213–225CrossRef
5.
Zurück zum Zitat Kardos C, Kovacs A, Vancza J (2017) Decomposition approach to optimal feature-based assembly planning. CIRP Ann-Manuf Technol 66(1):417–420CrossRef Kardos C, Kovacs A, Vancza J (2017) Decomposition approach to optimal feature-based assembly planning. CIRP Ann-Manuf Technol 66(1):417–420CrossRef
6.
Zurück zum Zitat Ghandi S, Masehian E (2015) Assembly sequence planning of rigid and flexible parts. J Manuf Syst 36:128–146CrossRef Ghandi S, Masehian E (2015) Assembly sequence planning of rigid and flexible parts. J Manuf Syst 36:128–146CrossRef
7.
Zurück zum Zitat Ong NS, Wong YC (1999) Automatic subassembly detection from a product model for disassembly sequence generation. Int J Adv Manuf Technol 15(6):425–431CrossRef Ong NS, Wong YC (1999) Automatic subassembly detection from a product model for disassembly sequence generation. Int J Adv Manuf Technol 15(6):425–431CrossRef
8.
Zurück zum Zitat Trigui M, Belhadj I, Benamara A (2017) Disassembly plan approach based on subassembly concept. Int J Adv Manuf Technol 90(1-4):219–231CrossRef Trigui M, Belhadj I, Benamara A (2017) Disassembly plan approach based on subassembly concept. Int J Adv Manuf Technol 90(1-4):219–231CrossRef
9.
Zurück zum Zitat Belhadj I, Trigui M, Benamara A (2016) Subassembly generation algorithm from a CAD model. Int J Adv Manuf Technol 87(9-12):2829–2840CrossRef Belhadj I, Trigui M, Benamara A (2016) Subassembly generation algorithm from a CAD model. Int J Adv Manuf Technol 87(9-12):2829–2840CrossRef
10.
Zurück zum Zitat Kashkoush M, ElMaraghy H (2015) Knowledge-based model for constructing master assembly sequence. J Manuf Syst 34:43–52CrossRef Kashkoush M, ElMaraghy H (2015) Knowledge-based model for constructing master assembly sequence. J Manuf Syst 34:43–52CrossRef
11.
Zurück zum Zitat Defazio TL, Whitney DE (1987) Simplified generation of all mechanical assembly sequences. IEEE J Robot Auto 3(6):640–658CrossRef Defazio TL, Whitney DE (1987) Simplified generation of all mechanical assembly sequences. IEEE J Robot Auto 3(6):640–658CrossRef
12.
Zurück zum Zitat Zhong YR, Jiang CH, Qin YC, Yang GY, Huang MF, Luo XN (2019) Automatically generating assembly sequences with an ontology-based approach. Assem Autom 40(2):319–334CrossRef Zhong YR, Jiang CH, Qin YC, Yang GY, Huang MF, Luo XN (2019) Automatically generating assembly sequences with an ontology-based approach. Assem Autom 40(2):319–334CrossRef
13.
Zurück zum Zitat Xing YF, Wang YS (2012) Assembly sequence planning based on a hybrid particle swarm optimisation and genetic algorithm. Int J Prod Res 50(24):7303–7312CrossRef Xing YF, Wang YS (2012) Assembly sequence planning based on a hybrid particle swarm optimisation and genetic algorithm. Int J Prod Res 50(24):7303–7312CrossRef
14.
Zurück zum Zitat Kara S, Pornprasitpol P, Kaebernick H (2006) Selective disassembly sequencing: A methodology for the disassembly of end-of-life products. CIRP Ann-Manuf Technol 55(1):37–40CrossRef Kara S, Pornprasitpol P, Kaebernick H (2006) Selective disassembly sequencing: A methodology for the disassembly of end-of-life products. CIRP Ann-Manuf Technol 55(1):37–40CrossRef
15.
Zurück zum Zitat Jin S, Cai W, Lai XM, Lin ZQ (2010) Design automation and optimization of assembly sequences for complex mechanical systems. Int J Adv Manuf Technol 48(9-12):1045–1059CrossRef Jin S, Cai W, Lai XM, Lin ZQ (2010) Design automation and optimization of assembly sequences for complex mechanical systems. Int J Adv Manuf Technol 48(9-12):1045–1059CrossRef
16.
Zurück zum Zitat Chakrabarty S, Wolter J (1997) A structure-oriented approach to assembly sequence planning. IEEE Trans Robot Autom 13(1):14–29CrossRef Chakrabarty S, Wolter J (1997) A structure-oriented approach to assembly sequence planning. IEEE Trans Robot Autom 13(1):14–29CrossRef
17.
Zurück zum Zitat Yin ZP, Ding H, Li HX, Xiong YL (2003) A connector-based hierarchical approach to assembly sequence planning for mechanical assemblies. Comput Aided Des 35(1):37–56CrossRef Yin ZP, Ding H, Li HX, Xiong YL (2003) A connector-based hierarchical approach to assembly sequence planning for mechanical assemblies. Comput Aided Des 35(1):37–56CrossRef
18.
Zurück zum Zitat Gupta S, Krishnan V (1998) Product family-based assembly sequence design methodology. IIE Trans 30(10):933–945 Gupta S, Krishnan V (1998) Product family-based assembly sequence design methodology. IIE Trans 30(10):933–945
19.
Zurück zum Zitat Su Q (2007) Computer aided geometric feasible assembly sequence planning and optimizing. Int J Adv Manuf Technol 33(1-2):48–58CrossRef Su Q (2007) Computer aided geometric feasible assembly sequence planning and optimizing. Int J Adv Manuf Technol 33(1-2):48–58CrossRef
20.
Zurück zum Zitat Zhou XM, Du PG (2008) A model-based approach to assembly sequence planning. Int J Adv Manuf Technol 39(9-10):983–994CrossRef Zhou XM, Du PG (2008) A model-based approach to assembly sequence planning. Int J Adv Manuf Technol 39(9-10):983–994CrossRef
21.
Zurück zum Zitat Santochi M, Dini G (1992) Computer-aided planning of assembly operations - the selection of assembly sequences. Robot Comput Integr Manuf 9(6):439–446 Santochi M, Dini G (1992) Computer-aided planning of assembly operations - the selection of assembly sequences. Robot Comput Integr Manuf 9(6):439–446
22.
Zurück zum Zitat Bai YW, Chen ZN, Bin HZ, Hun J (2005) An effective integration approach toward assembly sequence planning and evaluation. Int J Adv Manuf Technol 27(1-2):96–105CrossRef Bai YW, Chen ZN, Bin HZ, Hun J (2005) An effective integration approach toward assembly sequence planning and evaluation. Int J Adv Manuf Technol 27(1-2):96–105CrossRef
23.
Zurück zum Zitat Sanfilippo EM, Belkadi F, Bernard A (2019) Ontology-based knowledge representation for additive manufacturing. Comput Ind 109:182–194CrossRef Sanfilippo EM, Belkadi F, Bernard A (2019) Ontology-based knowledge representation for additive manufacturing. Comput Ind 109:182–194CrossRef
24.
Zurück zum Zitat Wang GF, Tian XT, Geng JH, Guo B (2015) A knowledge accumulation approach based on bilayer social wiki network for computer-aided process innovation. Int J Prod Res 53(8):2365–2382CrossRef Wang GF, Tian XT, Geng JH, Guo B (2015) A knowledge accumulation approach based on bilayer social wiki network for computer-aided process innovation. Int J Prod Res 53(8):2365–2382CrossRef
25.
Zurück zum Zitat Xing XJ, Zhong BT, Luo HB, Li H, Wu HT (2019) Ontology for safety risk identification in metro construction. Comput Ind 109:14–30CrossRef Xing XJ, Zhong BT, Luo HB, Li H, Wu HT (2019) Ontology for safety risk identification in metro construction. Comput Ind 109:14–30CrossRef
26.
Zurück zum Zitat He W, Wang FK, Akula V (2017) Managing extracted knowledge from big social media data for business decision making. J Knowl Manag 21(2):275–294CrossRef He W, Wang FK, Akula V (2017) Managing extracted knowledge from big social media data for business decision making. J Knowl Manag 21(2):275–294CrossRef
27.
Zurück zum Zitat Gao J, Bernard A (2018) An overview of knowledge sharing in new product development. Int J Adv Manuf Technol 94(5-8):1545–1550CrossRef Gao J, Bernard A (2018) An overview of knowledge sharing in new product development. Int J Adv Manuf Technol 94(5-8):1545–1550CrossRef
28.
Zurück zum Zitat Qiao LH, Qie YF, Zhu ZW, Zhu YX, Zaman UKU, Anwer N (2018) An ontology-based modelling and reasoning framework for assembly sequence planning. Int J Adv Manuf Technol 94(9-12):4187–4197CrossRef Qiao LH, Qie YF, Zhu ZW, Zhu YX, Zaman UKU, Anwer N (2018) An ontology-based modelling and reasoning framework for assembly sequence planning. Int J Adv Manuf Technol 94(9-12):4187–4197CrossRef
29.
Zurück zum Zitat Qin YC, Lu WL, Qi QF, Li TK, Huang MF, Scott PJ, Jiang XQ (2017) Explicitly representing the semantics of composite positional tolerance for patterns of holes. Int J Adv Manuf Technol 90(5-8):2121–2137CrossRef Qin YC, Lu WL, Qi QF, Li TK, Huang MF, Scott PJ, Jiang XQ (2017) Explicitly representing the semantics of composite positional tolerance for patterns of holes. Int J Adv Manuf Technol 90(5-8):2121–2137CrossRef
30.
Zurück zum Zitat Qin YC, Lu WL, Qi QF, Liu XJ, Huang MF, Scott PJ, Jiang XQ (2018) Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification. Knowl-Based Syst 141:129–147CrossRef Qin YC, Lu WL, Qi QF, Liu XJ, Huang MF, Scott PJ, Jiang XQ (2018) Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification. Knowl-Based Syst 141:129–147CrossRef
31.
Zurück zum Zitat Zhong YR, Qin YC, Huang MF, Lu WL, Gao WX, Du YL (2013) Automatically generating assembly tolerance types with an ontology-based approach. Comput Aided Des 45(11):1253–1275CrossRef Zhong YR, Qin YC, Huang MF, Lu WL, Gao WX, Du YL (2013) Automatically generating assembly tolerance types with an ontology-based approach. Comput Aided Des 45(11):1253–1275CrossRef
32.
Zurück zum Zitat Sarigecili MI, Roy U, Rachuri S (2014) Interpreting the semantics of GD&T specifications of a product for tolerance analysis. Comput Aided Des 47:72–84CrossRef Sarigecili MI, Roy U, Rachuri S (2014) Interpreting the semantics of GD&T specifications of a product for tolerance analysis. Comput Aided Des 47:72–84CrossRef
33.
Zurück zum Zitat Shi XL, Tian XT, Wang GF (2020) Screening product tolerances considering semantic variation propagation and fusion for assembly precision analysis. Int J Precis Eng Manuf 21:1259–1278CrossRef Shi XL, Tian XT, Wang GF (2020) Screening product tolerances considering semantic variation propagation and fusion for assembly precision analysis. Int J Precis Eng Manuf 21:1259–1278CrossRef
34.
Zurück zum Zitat Shi XL, Tian XT, Wang GF, Zhang M, Zhao DP (2018) A simplified model for assembly precision information of complex products based on tolerance semantic relations. Sustainability 10(12):4482CrossRef Shi XL, Tian XT, Wang GF, Zhang M, Zhao DP (2018) A simplified model for assembly precision information of complex products based on tolerance semantic relations. Sustainability 10(12):4482CrossRef
35.
Zurück zum Zitat Kardos C, Vancza J (2018) Mixed-initiative assembly planning combining geometric reasoning and constrained optimization. CIRP Ann-Manuf Technol 67(1):463–466CrossRef Kardos C, Vancza J (2018) Mixed-initiative assembly planning combining geometric reasoning and constrained optimization. CIRP Ann-Manuf Technol 67(1):463–466CrossRef
Metadaten
Titel
Semantic-based subassembly identification considering non-geometric structure attributes and assembly process factors
verfasst von
Xiaolin Shi
Xitian Tian
Gangfeng Wang
Dongping Zhao
Min Zhang
Publikationsdatum
13.08.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05881-y

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.