Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2020

14.02.2020

Shape Evolution of Unstable, Flexural Cracks in Brittle Materials

verfasst von: Lingyue Ma, Huan Sun, Roberto Dugnani

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this manuscript, the crack-shape evolution of unstable, flexural cracks was modeled using a continuum mechanics approach applied to dynamic, brittle, and elliptical cracks. The crack-shape evolution was first computed analytically for both flat and fractal cracks and subsequently compared to experimental values inferred from fractographic features present on silicate glass, gallium arsenide, and silicon single crystals fractured in bending. The trends predicted by the analytical model were consistent with the fractographic observations prior to the onset of crack-tip instabilities. It was determined that the effect of the surface roughness was to slow down the crack and to decrease the local crack-front radius of curvature which, in flexural cracks, led to crack shapes elongated along the free surface direction. This work represents the first attempt to predict the crack-shape evolution in rough, brittle samples fractured in bending and to understand the role played by the surface roughness during fast, unstable propagation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.H. Yoffe, LXXV. The Moving Griffith Crack, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1951, 42(330), p 739–750CrossRef E.H. Yoffe, LXXV. The Moving Griffith Crack, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1951, 42(330), p 739–750CrossRef
2.
Zurück zum Zitat J. Eshelby, Fracture meCHANICS, Sci. Prog., 1971, 59, p 161–179 J. Eshelby, Fracture meCHANICS, Sci. Prog., 1971, 59, p 161–179
3.
Zurück zum Zitat L. Freund, Crack Propagation in an Elastic Solid Subjected to General Loading—I. Constant Rate of Extension, J. Mech. Phys. Solids, 1972, 20(3), p 129–140CrossRef L. Freund, Crack Propagation in an Elastic Solid Subjected to General Loading—I. Constant Rate of Extension, J. Mech. Phys. Solids, 1972, 20(3), p 129–140CrossRef
4.
Zurück zum Zitat E. Sharon and J. Fineberg, Confirming the Continuum Theory of Dynamic Brittle Fracture for Fast Cracks, Nature, 1999, 397, p 333CrossRef E. Sharon and J. Fineberg, Confirming the Continuum Theory of Dynamic Brittle Fracture for Fast Cracks, Nature, 1999, 397, p 333CrossRef
5.
Zurück zum Zitat E. Sharon, S.P. Gross, and J. Fineberg, Local Crack Branching as a Mechanism for Instability in Dynamic Fracture, Phys. Rev. Lett., 1995, 74(25), p 5096–5099CrossRef E. Sharon, S.P. Gross, and J. Fineberg, Local Crack Branching as a Mechanism for Instability in Dynamic Fracture, Phys. Rev. Lett., 1995, 74(25), p 5096–5099CrossRef
6.
Zurück zum Zitat E. Sharon and J. Fineberg, Microbranching Instability and the Dynamic Fracture of Brittle Materials, Phys. Rev. B, 1996, 54(10), p 7128–7139CrossRef E. Sharon and J. Fineberg, Microbranching Instability and the Dynamic Fracture of Brittle Materials, Phys. Rev. B, 1996, 54(10), p 7128–7139CrossRef
7.
Zurück zum Zitat T. Cramer, A. Wanner, and P. Gumbsch, Energy Dissipation and Path Instabilities in Dynamic Fracture of Silicon Single Crystals, Phys. Rev. Lett., 2000, 85(4), p 788CrossRef T. Cramer, A. Wanner, and P. Gumbsch, Energy Dissipation and Path Instabilities in Dynamic Fracture of Silicon Single Crystals, Phys. Rev. Lett., 2000, 85(4), p 788CrossRef
8.
Zurück zum Zitat H. Bergkvist, An Investigation of Axisymmetric Crack Propagation, in ASTM STP 627 Fast Fracture and Crack Arrest (1977), pp. 312–335. H. Bergkvist, An Investigation of Axisymmetric Crack Propagation, in ASTM STP 627 Fast Fracture and Crack Arrest (1977), pp. 312–335.
9.
Zurück zum Zitat M.J. Buehler and H. Gao, Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips, Nature, 2006, 439, p 307CrossRef M.J. Buehler and H. Gao, Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips, Nature, 2006, 439, p 307CrossRef
10.
Zurück zum Zitat F. Kerkhof, General Lecture Wave Fractographic Investigations of Brittle Fracture Dynamics, in Proceedings of an International Conference on Dynamic Crack Propagation, ed. by G.C. Sih (Springer, Dordrecht, 1973), pp. 3–35. F. Kerkhof, General Lecture Wave Fractographic Investigations of Brittle Fracture Dynamics, in Proceedings of an International Conference on Dynamic Crack Propagation, ed. by G.C. Sih (Springer, Dordrecht, 1973), pp. 3–35.
11.
Zurück zum Zitat K. Ravi-Chandar and W. Knauss, An Experimental Investigation into Dynamic Fracture: I. Crack Initiation and Arrest, Int. J. Fract., 1984, 25(4), p 247–262CrossRef K. Ravi-Chandar and W. Knauss, An Experimental Investigation into Dynamic Fracture: I. Crack Initiation and Arrest, Int. J. Fract., 1984, 25(4), p 247–262CrossRef
12.
Zurück zum Zitat H. Gao, A Theory of Local Limiting Speed in Dynamic Fracture, J. Mech. Phys. Solids, 1996, 44(9), p 1453–1474CrossRef H. Gao, A Theory of Local Limiting Speed in Dynamic Fracture, J. Mech. Phys. Solids, 1996, 44(9), p 1453–1474CrossRef
13.
Zurück zum Zitat R. Dugnani and L. Ma, Energy Release Rate of Moving Circular-Cracks, Eng. Fract. Mech., 2019, 213, p 118–130CrossRef R. Dugnani and L. Ma, Energy Release Rate of Moving Circular-Cracks, Eng. Fract. Mech., 2019, 213, p 118–130CrossRef
14.
Zurück zum Zitat L.B. Freund and R.J. Clifton, On the Uniqueness of Plane Elastodynamic Solutions for Running Cracks, J. Elast., 1974, 4(4), p 293–299CrossRef L.B. Freund and R.J. Clifton, On the Uniqueness of Plane Elastodynamic Solutions for Running Cracks, J. Elast., 1974, 4(4), p 293–299CrossRef
15.
Zurück zum Zitat N.F. Mott, Fracture of Metals: Theoretical Considerations, Engineering, 1948, 165, p 16–18 N.F. Mott, Fracture of Metals: Theoretical Considerations, Engineering, 1948, 165, p 16–18
16.
Zurück zum Zitat D.K. Roberts and A.A. Wells, The Velocity of Brittle Fracture, Engineering, 1954, 171, p 820–821 D.K. Roberts and A.A. Wells, The Velocity of Brittle Fracture, Engineering, 1954, 171, p 820–821
17.
Zurück zum Zitat G.K. Bansal, On Fracture Mirror Formation in Glass and Polycrystalline Ceramics, Phil. Mag., 1977, 35(4), p 935–944CrossRef G.K. Bansal, On Fracture Mirror Formation in Glass and Polycrystalline Ceramics, Phil. Mag., 1977, 35(4), p 935–944CrossRef
18.
Zurück zum Zitat A.I.A. Abdel-Latif, R.C. Bradt, and R.E. Tressler, Dynamics of Fracture Mirror Boundary Formation in Glass, Int. J. Fract., 1977, 13(3), p 349–359 A.I.A. Abdel-Latif, R.C. Bradt, and R.E. Tressler, Dynamics of Fracture Mirror Boundary Formation in Glass, Int. J. Fract., 1977, 13(3), p 349–359
19.
Zurück zum Zitat Y.M. Tsai, Exact Stress Distribution, Crack Shape and Energy for a Running Penny-Shaped Crack in an Infinite Elastic Solid, Int. J. Fract., 1973, 9(2), p 157–169CrossRef Y.M. Tsai, Exact Stress Distribution, Crack Shape and Energy for a Running Penny-Shaped Crack in an Infinite Elastic Solid, Int. J. Fract., 1973, 9(2), p 157–169CrossRef
20.
Zurück zum Zitat J. Craggs, The Growth of a Disk-Shaped Crack, Int. J. Eng. Sci., 1966, 4(2), p 113–124CrossRef J. Craggs, The Growth of a Disk-Shaped Crack, Int. J. Eng. Sci., 1966, 4(2), p 113–124CrossRef
21.
Zurück zum Zitat B. Kostrov, The Axisymmetric Problem of Propagation of a Tension Crack, J. Appl. Math. Mech., 1964, 28(4), p 793–803CrossRef B. Kostrov, The Axisymmetric Problem of Propagation of a Tension Crack, J. Appl. Math. Mech., 1964, 28(4), p 793–803CrossRef
22.
Zurück zum Zitat F. Erdogan, Crack Propagation Theories (Lehigh University, Bethlehem, 1967) F. Erdogan, Crack Propagation Theories (Lehigh University, Bethlehem, 1967)
23.
Zurück zum Zitat L.B. Freund, Dynamic Fracture Mechanics, Vol. 9 (Cambridge University Press, Cambridge, 1998), pp. 1689–1699. L.B. Freund, Dynamic Fracture Mechanics, Vol. 9 (Cambridge University Press, Cambridge, 1998), pp. 1689–1699.
24.
Zurück zum Zitat R. Burridge and J.R. Willis, The Self-similar Problem of the Expanding Elliptical Crack in an Anisotropic Solid, Math. Proc. Camb. Philos. Soc., 2008, 66(2), p 443–468CrossRef R. Burridge and J.R. Willis, The Self-similar Problem of the Expanding Elliptical Crack in an Anisotropic Solid, Math. Proc. Camb. Philos. Soc., 2008, 66(2), p 443–468CrossRef
25.
Zurück zum Zitat L. Zhao, D. Bardel, A. Maynadier, and D. Nelias, Crack Initiation Behavior in Single Crystalline Silicon, Scr. Mater., 2017, 130, p 83–86CrossRef L. Zhao, D. Bardel, A. Maynadier, and D. Nelias, Crack Initiation Behavior in Single Crystalline Silicon, Scr. Mater., 2017, 130, p 83–86CrossRef
26.
Zurück zum Zitat D. Sherman and I. Be’ery, Shape and Energies of a Dynamically Propagating Crack Under Bending, J. Mater. Res., 2003, 18(10), p 2379–2386CrossRef D. Sherman and I. Be’ery, Shape and Energies of a Dynamically Propagating Crack Under Bending, J. Mater. Res., 2003, 18(10), p 2379–2386CrossRef
27.
Zurück zum Zitat C.J. Newman, I.S. Raju, Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads (NASA Technical Memorandum, 1983) C.J. Newman, I.S. Raju, Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads (NASA Technical Memorandum, 1983)
28.
Zurück zum Zitat R. Gol’dshtein and A. Mosolov, Fractal Cracks, J. Appl. Math. Mech., 1992, 56(4), p 563–571CrossRef R. Gol’dshtein and A. Mosolov, Fractal Cracks, J. Appl. Math. Mech., 1992, 56(4), p 563–571CrossRef
29.
Zurück zum Zitat R. Smith and J. Mecholsky, Jr., Application of Atomic Force Microscopy in Determining the Fractal Dimension of the Mirror, Mist, and Hackle Region of Silica Glass, Mater. Charact., 2011, 62(5), p 457–462CrossRef R. Smith and J. Mecholsky, Jr., Application of Atomic Force Microscopy in Determining the Fractal Dimension of the Mirror, Mist, and Hackle Region of Silica Glass, Mater. Charact., 2011, 62(5), p 457–462CrossRef
30.
Zurück zum Zitat R. Dugnani, Z. Pan, M. Wu, Degradation of Consumer Products Glasses after Extended Use. 2009 MS&T Proc, vol. 1 (2009), pp. 500–509. R. Dugnani, Z. Pan, M. Wu, Degradation of Consumer Products Glasses after Extended Use. 2009 MS&T Proc, vol. 1 (2009), pp. 500–509.
31.
Zurück zum Zitat P. Dwivedi and D.J. Green, Indentation Crack-Shape Evolution during Subcritical Crack Growth, J. Am. Ceram. Soc., 1995, 78(5), p 1240–1246CrossRef P. Dwivedi and D.J. Green, Indentation Crack-Shape Evolution during Subcritical Crack Growth, J. Am. Ceram. Soc., 1995, 78(5), p 1240–1246CrossRef
32.
Zurück zum Zitat A. Rabinovitch, V. Frid, D. Bahat, Wallner Lines Revisited, ed: AIP (2006) A. Rabinovitch, V. Frid, D. Bahat, Wallner Lines Revisited, ed: AIP (2006)
33.
Zurück zum Zitat D. Sherman, Fractography of Dynamic Crack Propagation in Silicon Crystal, Key Eng. Mater., 2009, 409(November), p 55–64CrossRef D. Sherman, Fractography of Dynamic Crack Propagation in Silicon Crystal, Key Eng. Mater., 2009, 409(November), p 55–64CrossRef
34.
Zurück zum Zitat G.D. Quinn, NIST Recommended Practice Guide: Fractography of Ceramics and Glasses. NIST SP - 960-16 (2016) G.D. Quinn, NIST Recommended Practice Guide: Fractography of Ceramics and Glasses. NIST SP - 960-16 (2016)
35.
Zurück zum Zitat T.A. Schwartz, The Fractography of Inorganic Glass (Massachusetts Institute of Technology, 1977) T.A. Schwartz, The Fractography of Inorganic Glass (Massachusetts Institute of Technology, 1977)
36.
Zurück zum Zitat C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L.V. Brutzel, and P. Vashishta, Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations, Annu. Rev. Mater. Res., 2002, 12(32), p 377–400CrossRef C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L.V. Brutzel, and P. Vashishta, Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations, Annu. Rev. Mater. Res., 2002, 12(32), p 377–400CrossRef
37.
Zurück zum Zitat K. Sauthoff, M. Wenderoth, A.J. Heinrich, M.A. Rosentreter, K.J. Engel, T.C.G. Reusch, R.G. Ulbrich. Nonlinear Dynamic Instability in Brittle Fracture of GaAs. Phys. Rev. B: Condens. Matter Mater. Phys. 60(7), 4789–4795 (1999)CrossRef K. Sauthoff, M. Wenderoth, A.J. Heinrich, M.A. Rosentreter, K.J. Engel, T.C.G. Reusch, R.G. Ulbrich. Nonlinear Dynamic Instability in Brittle Fracture of GaAs. Phys. Rev. B: Condens. Matter Mater. Phys. 60(7), 4789–4795 (1999)CrossRef
38.
Zurück zum Zitat C.P. Chen, Fracture Mechanics Evaluation of GaAs (Final Report, 1984) C.P. Chen, Fracture Mechanics Evaluation of GaAs (Final Report, 1984)
39.
Zurück zum Zitat V.M. Bright, Y. Kim, and W.D. Hunt, Study of Surface Acoustic Waves on the 110 Plane of Gallium Arsenide, J. Appl. Phys., 1992, 71(2), p 597–605CrossRef V.M. Bright, Y. Kim, and W.D. Hunt, Study of Surface Acoustic Waves on the 110 Plane of Gallium Arsenide, J. Appl. Phys., 1992, 71(2), p 597–605CrossRef
40.
Zurück zum Zitat A. Makishima and J.D. Mackenzie, Calculation of Bulk Modulus, Shear Modulus and Poisson’s Ratio of Glass, J. Noncryst. Solids, 1975, 17(2), p 147–157CrossRef A. Makishima and J.D. Mackenzie, Calculation of Bulk Modulus, Shear Modulus and Poisson’s Ratio of Glass, J. Noncryst. Solids, 1975, 17(2), p 147–157CrossRef
41.
Zurück zum Zitat J. Kim, D.-I.D. Cho, R.S. Muller, Why is (111) Silicon a Better Mechanical Material for MEMS? in Transducers’ 01 Eurosensors XV (Springer, 2001), pp. 662–665. J. Kim, D.-I.D. Cho, R.S. Muller, Why is (111) Silicon a Better Mechanical Material for MEMS? in Transducers’ 01 Eurosensors XV (Springer, 2001), pp. 662–665.
42.
Zurück zum Zitat S. Adachi, Properties of Aluminium Gallium Arsenide (no. 7) (IET, 1993) S. Adachi, Properties of Aluminium Gallium Arsenide (no. 7) (IET, 1993)
Metadaten
Titel
Shape Evolution of Unstable, Flexural Cracks in Brittle Materials
verfasst von
Lingyue Ma
Huan Sun
Roberto Dugnani
Publikationsdatum
14.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04657-5

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Engineering and Performance 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.