Skip to main content
Erschienen in: Polymer Bulletin 6/2022

10.05.2021 | Review Paper

Shape memory polymer nanocomposite: a review on structure–property relationship

verfasst von: Haresh Bhanushali, Shweta Amrutkar, Siddhesh Mestry, S. T. Mhaske

Erschienen in: Polymer Bulletin | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory polymers (SMPs) are among the main groups of smart materials widely used in smart textiles and apparels, intelligent medical devices, sensors & actuators, high-performance water–vapor permeability materials, morphing applications, and self-deployable structures in spacecraft. However, SMPs have some limitations: comparatively low tensile strength and stiffness, relatively low recovery stress, low thermal conductivity, inertness to electrical, light, and electromagnetic stimuli accompanied by slow responsibility and low recovery time during actuation, which often limits SMPs potential applications in high-performance field. In recent years, researchers have focused more on shape memory polymer nanocomposites (SMPNCs) than the classical composites to overcome this limitation of the SMPs, as nanofillers have a large surface area and strong interaction with polymers. This review thoroughly examines the progress in SMPNCs, including the very recent past, with a particular focus on their structure–property relationship. Considering all the SMPs, the most commonly used SMPs like polyurethane, epoxy, polycaprolactam, polylactic acid, and polyvinyl alcohol along with carbon-based (i.e., CNTs, carbon black, graphene oxide, graphene nanoplatelets, graphene quantum dots, nano-diamonds), metal oxide-based (i.e., Fe3O4, TiO2), cellulose-based (i.e., cellulose nanocrystals, nano-cellulose gel), and other nanomaterials like nano-clay, TiN, AuNRs, organic nanoparticles, silica, sepiolite, silsesquioxane, and hydroxyapatite nanofillers are discussed. The future development of SMPNCs may enhance their performance under thermal, electric, light (UV/NIR), magnetic, and solvent (pH/water) stimuli, which may open the door to more advanced applications in the field of aerospace, robotics, sensing and actuation, and biomedical.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tao X (2001) Smart fibres, fabrics and clothing. Woodhead Publishing Limited, CambridgeCrossRef Tao X (2001) Smart fibres, fabrics and clothing. Woodhead Publishing Limited, CambridgeCrossRef
3.
Zurück zum Zitat Arun DI, Chakravarthy P, Arockiakumar RSB (2018) Shape memory materials, 1st edn. CRC Press, FloridaCrossRef Arun DI, Chakravarthy P, Arockiakumar RSB (2018) Shape memory materials, 1st edn. CRC Press, FloridaCrossRef
21.
Zurück zum Zitat Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54:2199–2221CrossRef Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54:2199–2221CrossRef
22.
Zurück zum Zitat Hu J (2007) Shape memory polymers and textiles. Woodhead Punlishing Ltd., CambridgeCrossRef Hu J (2007) Shape memory polymers and textiles. Woodhead Punlishing Ltd., CambridgeCrossRef
28.
Zurück zum Zitat Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113 Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113
36.
Zurück zum Zitat Al LBVET, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resin Al LBVET, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resin
37.
Zurück zum Zitat Heilig ML (1994) Polyethylene product and process. ACM SIGGRAPH Comput Graph 28:131–134CrossRef Heilig ML (1994) Polyethylene product and process. ACM SIGGRAPH Comput Graph 28:131–134CrossRef
114.
Zurück zum Zitat Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer (Guildf) 51:975–993CrossRef Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer (Guildf) 51:975–993CrossRef
131.
Zurück zum Zitat Aboutalebi SH, Aboutalebi SH, Salari M et al (2017) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy 4:1855–1865 Aboutalebi SH, Aboutalebi SH, Salari M et al (2017) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy 4:1855–1865
137.
Zurück zum Zitat Xie T (2011) Recent advances in polymer shape memory. Polymer (Guildf) 52:4985–5000CrossRef Xie T (2011) Recent advances in polymer shape memory. Polymer (Guildf) 52:4985–5000CrossRef
168.
Zurück zum Zitat Abbasi A, Mir Mohamad Sadeghi G, Ghasemi I, Shahrousvand M (2018) Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: Synthesis, properties, and cell behavior. Polym Compos 39:4020–4033. https://doi.org/10.1002/pc.24456CrossRef Abbasi A, Mir Mohamad Sadeghi G, Ghasemi I, Shahrousvand M (2018) Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: Synthesis, properties, and cell behavior. Polym Compos 39:4020–4033. https://​doi.​org/​10.​1002/​pc.​24456CrossRef
172.
Zurück zum Zitat Yongkun Wang, Tianran Ma, Wenchao Tian, Junjie Ye XW and XJ (2017) Electroactive shape memory properties of graphene/epoxy-cyanate ester nanocomposites. Pigment Resin Technol Yongkun Wang, Tianran Ma, Wenchao Tian, Junjie Ye XW and XJ (2017) Electroactive shape memory properties of graphene/epoxy-cyanate ester nanocomposites. Pigment Resin Technol
199.
Zurück zum Zitat Bayan R, Karak N (2017) Renewable resource derived aliphatic hyperbranched polyurethane/aluminium hydroxide-reduced graphene oxide nanocomposites as robust, thermostable material with multi-stimuli responsive shape memory features. New J Chem 41:8781–8790. https://doi.org/10.1039/c7nj01841jCrossRef Bayan R, Karak N (2017) Renewable resource derived aliphatic hyperbranched polyurethane/aluminium hydroxide-reduced graphene oxide nanocomposites as robust, thermostable material with multi-stimuli responsive shape memory features. New J Chem 41:8781–8790. https://​doi.​org/​10.​1039/​c7nj01841jCrossRef
227.
236.
Zurück zum Zitat Carlotti S, Tunc D, Le Coz C et al (2014) Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules 23:8247–8254 Carlotti S, Tunc D, Le Coz C et al (2014) Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules 23:8247–8254
240.
Zurück zum Zitat Neumann O, Urban A, Day J, Lal S (2012) Solar vapor generation enabled by nanoparticles: supporting information. ACS Nano 7:42–49CrossRef Neumann O, Urban A, Day J, Lal S (2012) Solar vapor generation enabled by nanoparticles: supporting information. ACS Nano 7:42–49CrossRef
244.
Zurück zum Zitat Patel DK, Biswas A, Maiti P (2016) Nanoparticle-induced phenomena in polyurethanes. Elsevier, AmsterdamCrossRef Patel DK, Biswas A, Maiti P (2016) Nanoparticle-induced phenomena in polyurethanes. Elsevier, AmsterdamCrossRef
Metadaten
Titel
Shape memory polymer nanocomposite: a review on structure–property relationship
verfasst von
Haresh Bhanushali
Shweta Amrutkar
Siddhesh Mestry
S. T. Mhaske
Publikationsdatum
10.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2022
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-021-03686-x

Weitere Artikel der Ausgabe 6/2022

Polymer Bulletin 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.