Skip to main content
Erschienen in: International Journal of Steel Structures 3/2021

15.04.2021

Shear Lag Effect in Welded Single Angle Tension Member

verfasst von: Jagdish R. Dhanuskar, Laxmikant M. Gupta

Erschienen in: International Journal of Steel Structures | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The typical failure of a welded single angle tension member is a gross section failure. The rupture strength of the single angle tension member is affected by the effect of shear lag. Full-scale tests on twenty-seven single angle specimens reported in this paper. Four different angle sections with four different section types were used in the test. The test parameter includes the steel's grade, length of the connection, the eccentricity of the connection, and balanced and unbalanced weld arrangement. Twenty-three specimens failed by fracture of the gross section area, one failed in mixed mode (angle tear and the weld failure), and the remaining three failed in the weld. To interpret the experimental results, finite element analysis was performed on the specimen’s model. The finite element model well represents the welded single-angle tension member's behaviour, and finite element results show exemplary test results. The ultimate strengths of the test specimens were also evaluated by using the current design standards (IS 800, AISC, CSA, AS 4100, and EC-3), the (1− x̅/L) rule, and Kulak and Wu’s equation. In general, IS 800 provides a good prediction of test results, AISC and AS 4100 provide a slightly conservative forecast; however, CSA and EC-3 provide a slightly un-conservative prediction. For a balanced weld arrangement, the specimen's ultimate strength increased with an increase in connection length; however, an increase in connection length does not increase the specimen's ultimate strength for an unbalanced weld arrangement. The angle specimen's efficiency decreased significantly with an increase in eccentricity. The rupture strength predicted by assuming the ultimate strength of the connected leg and the strength contributed by the outstanding leg at the critical section shows a good prediction of the strength over the (1− x̅/L) rule.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AISC Committee. ANSI, AISC 360–16. (2016). Specification for Structural Steel Buildings. American Institute of Steel Construction. AISC Committee. ANSI, AISC 360–16. (2016). Specification for Structural Steel Buildings. American Institute of Steel Construction.
Zurück zum Zitat AS4100, A. S. (1998). Steel structures. Standards Australia. AS4100, A. S. (1998). Steel structures. Standards Australia.
Zurück zum Zitat ANSYS Inc. (2013) PDF documentation for release 15.0, ANSYS element reference, Canonsburg. ANSYS Inc. (2013) PDF documentation for release 15.0, ANSYS element reference, Canonsburg.
Zurück zum Zitat Barth, K. E., Orbison, J. G., & Nukala, R. (2002). Behavior of steel tension members subjected to uniaxial loading. Journal of Constructional Steel Research, 58(5), 1103–1120.CrossRef Barth, K. E., Orbison, J. G., & Nukala, R. (2002). Behavior of steel tension members subjected to uniaxial loading. Journal of Constructional Steel Research, 58(5), 1103–1120.CrossRef
Zurück zum Zitat Batho, C. (1915). The effect of the end connections on the distribution of stress in certain tension members. Journal of the Franklin Institute, 180(2), 129–172CrossRef Batho, C. (1915). The effect of the end connections on the distribution of stress in certain tension members. Journal of the Franklin Institute, 180(2), 129–172CrossRef
Zurück zum Zitat Cheng, J. J. R., Kulak, G. L., & Khoo, H. A. (1998). Strength of slotted tubular tension members. Canadian Journal of Civil Engineering, 25(6), 982–991CrossRef Cheng, J. J. R., Kulak, G. L., & Khoo, H. A. (1998). Strength of slotted tubular tension members. Canadian Journal of Civil Engineering, 25(6), 982–991CrossRef
Zurück zum Zitat Cheng, J. J. R., & Kulak, G. L. (2000). Gusset plate connection to round HSS tension members. Engineering Journal-American Institute of Steel Construction, 37(4), 133–139 Cheng, J. J. R., & Kulak, G. L. (2000). Gusset plate connection to round HSS tension members. Engineering Journal-American Institute of Steel Construction, 37(4), 133–139
Zurück zum Zitat Munse, W. H., & Chesson, E. (1963). Riveted and bolted joints: net section design. Journal of Structural Engineering, ASCE, 89(1), 107–126 Munse, W. H., & Chesson, E. (1963). Riveted and bolted joints: net section design. Journal of Structural Engineering, ASCE, 89(1), 107–126
Zurück zum Zitat CSA, C. S16-14. (2014). Design of Steel Structures. Canadian Standards Association. CSA, C. S16-14. (2014). Design of Steel Structures. Canadian Standards Association.
Zurück zum Zitat Davis, R. P., & Boomslitter, G. P. (1934). Tensile tests of welded and riveted structural members. Journal of the American Welding Society, 13(4), 21–27 Davis, R. P., & Boomslitter, G. P. (1934). Tensile tests of welded and riveted structural members. Journal of the American Welding Society, 13(4), 21–27
Zurück zum Zitat Easterling, W. S., & Gonzales, L. (1993). Shear lag effects in steel tension members. Engineering Journal, 3, 77–89 Easterling, W. S., & Gonzales, L. (1993). Shear lag effects in steel tension members. Engineering Journal, 3, 77–89
Zurück zum Zitat Eurocode, C.E.N. 3, EN1993-1-1. (2005). Design of steel structures, Part 1–1: General rules and rules for buildings. European Committee for Standardization. Eurocode, C.E.N. 3, EN1993-1-1. (2005). Design of steel structures, Part 1–1: General rules and rules for buildings. European Committee for Standardization.
Zurück zum Zitat Fang, C., Lam, A. C., & Yam, M. C. (2013). Influence of shear lag on ultimate tensile capacity of angles and tees. Journal of constructional steel research, 84, 49–61CrossRef Fang, C., Lam, A. C., & Yam, M. C. (2013). Influence of shear lag on ultimate tensile capacity of angles and tees. Journal of constructional steel research, 84, 49–61CrossRef
Zurück zum Zitat Gibson, G. T., & Wake, B. T. (1942). An investigation of welded connections for angle tension members. Welding Journal, 21(1), 44–49. Gibson, G. T., & Wake, B. T. (1942). An investigation of welded connections for angle tension members. Welding Journal, 21(1), 44–49.
Zurück zum Zitat Greiner, J. E. (1987). Recent tests of bridge members. Transactions of the American Society of Civil Engineers, 38(2), 41–67CrossRef Greiner, J. E. (1987). Recent tests of bridge members. Transactions of the American Society of Civil Engineers, 38(2), 41–67CrossRef
Zurück zum Zitat Ke, K., Xiong, Y. H., Yam, M. C., Lam, A. C., & Chung, K. F. (2018). Shear lag effect on ultimate tensile capacity of high strength steel angles. Journal of Constructional Steel Research, 145, 300–314CrossRef Ke, K., Xiong, Y. H., Yam, M. C., Lam, A. C., & Chung, K. F. (2018). Shear lag effect on ultimate tensile capacity of high strength steel angles. Journal of Constructional Steel Research, 145, 300–314CrossRef
Zurück zum Zitat Kim, T., Kim, M., & Cho, T. (2018). Parametric study on ultimate strength of four-bolted connections with cold-formed carbon steel. International Journal of Steel Structures, 18(1), 265–280.CrossRef Kim, T., Kim, M., & Cho, T. (2018). Parametric study on ultimate strength of four-bolted connections with cold-formed carbon steel. International Journal of Steel Structures, 18(1), 265–280.CrossRef
Zurück zum Zitat Kulak, G. L., & Wu, E. Y. (1997). Shear lag in bolted angle tension members. Journal of Structural Engineering, 123(9), 1144–1152CrossRef Kulak, G. L., & Wu, E. Y. (1997). Shear lag in bolted angle tension members. Journal of Structural Engineering, 123(9), 1144–1152CrossRef
Zurück zum Zitat Mannem, R. (2002). Shear lag effects on welded steel angles and plates (Doctoral dissertation, Memorial University of Newfoundland). Mannem, R. (2002). Shear lag effects on welded steel angles and plates (Doctoral dissertation, Memorial University of Newfoundland).
Zurück zum Zitat McKibben, F. P. (1906). Tension tests of steel angles. Proceedings of the Ninth Annual Meeting, American Society for Testing Materials, Atlantic City, New Jersey, 6, 267–274 McKibben, F. P. (1906). Tension tests of steel angles. Proceedings of the Ninth Annual Meeting, American Society for Testing Materials, Atlantic City, New Jersey, 6, 267–274
Zurück zum Zitat McKibben, F. P. (1907). Tension tests of steel angles with various types of end connections. Proceedings of the Tenth Annual Meeting, American Society for Testing Materials, Atlantic City, New Jersey, 7, 287–295 McKibben, F. P. (1907). Tension tests of steel angles with various types of end connections. Proceedings of the Tenth Annual Meeting, American Society for Testing Materials, Atlantic City, New Jersey, 7, 287–295
Zurück zum Zitat Nelson, H. M. (1953). Angles in tension. (pp. 8–18). United Kingdom: British Constructional Steelwork Association on Publication No 7. Nelson, H. M. (1953). Angles in tension. (pp. 8–18). United Kingdom: British Constructional Steelwork Association on Publication No 7.
Zurück zum Zitat Orbison, J. G., Barth, K. E., & Bartels, P. A. (2002). Net section rupture in tension members with connection eccentricity. Journal of Structural Engineering, 128(8), 976–985CrossRef Orbison, J. G., Barth, K. E., & Bartels, P. A. (2002). Net section rupture in tension members with connection eccentricity. Journal of Structural Engineering, 128(8), 976–985CrossRef
Zurück zum Zitat Regan, P. E., & Salter, P. R. (1984). Tests on welded-angle tension members. Structural Engineer, 62, 25–30 Regan, P. E., & Salter, P. R. (1984). Tests on welded-angle tension members. Structural Engineer, 62, 25–30
Zurück zum Zitat Sayed, A. M. (2020a). Numerical analysis of single-angle steel member under tension load with damage in the unconnected leg. Structures (Elsevier), 25, 920–929 Sayed, A. M. (2020a). Numerical analysis of single-angle steel member under tension load with damage in the unconnected leg. Structures (Elsevier), 25, 920–929
Zurück zum Zitat Sayed, A. M. (2020b). Numerical analysis of single-angle steel member under tension force with different end deformations. Civil Engineering Journal, 6(8), 1520–1533CrossRef Sayed, A. M. (2020b). Numerical analysis of single-angle steel member under tension force with different end deformations. Civil Engineering Journal, 6(8), 1520–1533CrossRef
Zurück zum Zitat Standard, B.I., IS 800. (2007). General construction in steel-code of practice, 3rd Revision. Bureau of Indian Standard. Standard, B.I., IS 800. (2007). General construction in steel-code of practice, 3rd Revision. Bureau of Indian Standard.
Zurück zum Zitat Standard, B.I., IS 808:1989. (2004). Dimensions for hot rolled steel beam, column, channel and angle Sections. 3rd revision. Bureau of Indian Standard. Standard, B.I., IS 808:1989. (2004). Dimensions for hot rolled steel beam, column, channel and angle Sections. 3rd revision. Bureau of Indian Standard.
Zurück zum Zitat Standard, B.I., IS 1608: 2005. (2005). Metallic materials—tensile testing at ambient temperature 3rd revision. Bureau of Indian Standard. Standard, B.I., IS 1608: 2005. (2005). Metallic materials—tensile testing at ambient temperature 3rd revision. Bureau of Indian Standard.
Zurück zum Zitat Standard, B.I., IS. (2011). Hot rolled medium and high tensile structural steel—specification. 7th revision. Bureau of Indian Standard. Standard, B.I., IS. (2011). Hot rolled medium and high tensile structural steel—specification. 7th revision. Bureau of Indian Standard.
Zurück zum Zitat Usha, Analytical study of nonlinear behaviour of steel angle tension members. MS thesis, Indian Institute of Technology, Madras; December 2003. Usha, Analytical study of nonlinear behaviour of steel angle tension members. MS thesis, Indian Institute of Technology, Madras; December 2003.
Zurück zum Zitat Uzoegbo, H. C. (1998). Shear lag in steel angles: An investigation of the South African standards. Journal of Constructional Steel Research, 1(46), 162CrossRef Uzoegbo, H. C. (1998). Shear lag in steel angles: An investigation of the South African standards. Journal of Constructional Steel Research, 1(46), 162CrossRef
Zurück zum Zitat Yam, M. C., Ke, K., Jiang, B., & Lam, A. C. (2020). Net section resistance of bolted S690 steel angles subjected to tension. Thin-Walled Structures, 151, 106722CrossRef Yam, M. C., Ke, K., Jiang, B., & Lam, A. C. (2020). Net section resistance of bolted S690 steel angles subjected to tension. Thin-Walled Structures, 151, 106722CrossRef
Zurück zum Zitat Zhu, H. T., Yam, M. C., Lam, A. C., & Iu, V. P. (2009). The shear lag effects on welded steel single angle tension members. Journal of Constructional Steel Research, 65(5), 1171–1186CrossRef Zhu, H. T., Yam, M. C., Lam, A. C., & Iu, V. P. (2009). The shear lag effects on welded steel single angle tension members. Journal of Constructional Steel Research, 65(5), 1171–1186CrossRef
Metadaten
Titel
Shear Lag Effect in Welded Single Angle Tension Member
verfasst von
Jagdish R. Dhanuskar
Laxmikant M. Gupta
Publikationsdatum
15.04.2021
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 3/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00482-1

Weitere Artikel der Ausgabe 3/2021

International Journal of Steel Structures 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.