Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2023

01.12.2023

Short time angular impulse response of Rayleigh beams

verfasst von: Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Timoshenko SP (2003) History of Strength of Materials. Dover, New York Timoshenko SP (2003) History of Strength of Materials. Dover, New York
2.
Zurück zum Zitat Graff KF (1975) Wave motion in elastic solids. Oxford University Press, OxfordMATH Graff KF (1975) Wave motion in elastic solids. Oxford University Press, OxfordMATH
3.
4.
Zurück zum Zitat Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41(245):744–746CrossRef Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41(245):744–746CrossRef
5.
Zurück zum Zitat Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Lond Edinb Dublin Philos Mag J Sci 43(253):125–131CrossRef Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Lond Edinb Dublin Philos Mag J Sci 43(253):125–131CrossRef
6.
Zurück zum Zitat Meirovitch L (1997) Principles and techniques of vibrations. Prentice-Hall, Upper Saddle River Meirovitch L (1997) Principles and techniques of vibrations. Prentice-Hall, Upper Saddle River
7.
Zurück zum Zitat Chatterjee A (2004) The short-time impulse response of Euler-Bernoulli beams. J Appl Mech ASME 71(2):208–218CrossRefMATH Chatterjee A (2004) The short-time impulse response of Euler-Bernoulli beams. J Appl Mech ASME 71(2):208–218CrossRefMATH
8.
9.
Zurück zum Zitat Schwieger H (1965) A simple calculation of the transverse impact on beams and its experimental verification. Exp Mech 5(11):378–384CrossRef Schwieger H (1965) A simple calculation of the transverse impact on beams and its experimental verification. Exp Mech 5(11):378–384CrossRef
10.
Zurück zum Zitat Schwieger H (1970) Central deflection of a transversely struck beam. Exp Mech 10(4):166–169CrossRef Schwieger H (1970) Central deflection of a transversely struck beam. Exp Mech 10(4):166–169CrossRef
11.
Zurück zum Zitat Meijaard J (2007) Lateral impacts on flexible beams in multibody dynamics simulations. IUTAM symposium on multiscale problems in multibody system contacts. Springer, Dordrecht, pp 173–182CrossRefMATH Meijaard J (2007) Lateral impacts on flexible beams in multibody dynamics simulations. IUTAM symposium on multiscale problems in multibody system contacts. Springer, Dordrecht, pp 173–182CrossRefMATH
12.
Zurück zum Zitat Bhattacharjee A, Chatterjee A (2018) Transverse impact of a Hertzian body with an infinitely long Euler-Bernoulli beam. J Sound Vib 429:147–161CrossRef Bhattacharjee A, Chatterjee A (2018) Transverse impact of a Hertzian body with an infinitely long Euler-Bernoulli beam. J Sound Vib 429:147–161CrossRef
13.
Zurück zum Zitat Claeyssen JR, Chiwiacowsky LD, Suazo GC (2002) The impulse response in the symbolic computing of modes for beams and plates. Appl Numer Math 40(1–2):119–135CrossRefMATH Claeyssen JR, Chiwiacowsky LD, Suazo GC (2002) The impulse response in the symbolic computing of modes for beams and plates. Appl Numer Math 40(1–2):119–135CrossRefMATH
14.
Zurück zum Zitat Roy PK, Ganesan N (1995) Transient response of a cantilever beam subjected to an impulse load. J Sound Vib 183(5):873–880CrossRefMATH Roy PK, Ganesan N (1995) Transient response of a cantilever beam subjected to an impulse load. J Sound Vib 183(5):873–880CrossRefMATH
15.
Zurück zum Zitat Barkanov E, Rikards R, Holste C, Täger O (2000) Transient response of sandwich viscoelastic beams, plates, and shells under impulse loading. Mech Compos Mater 36(3):215–222CrossRef Barkanov E, Rikards R, Holste C, Täger O (2000) Transient response of sandwich viscoelastic beams, plates, and shells under impulse loading. Mech Compos Mater 36(3):215–222CrossRef
16.
Zurück zum Zitat Jayaprakash K, Desai YM, Naik NK (2013) Fatigue behavior of \([0_n/90_n]_s\) composite cantilever beam under tip impulse loading. Compos Struct 99:255–263CrossRef Jayaprakash K, Desai YM, Naik NK (2013) Fatigue behavior of \([0_n/90_n]_s\) composite cantilever beam under tip impulse loading. Compos Struct 99:255–263CrossRef
17.
Zurück zum Zitat Wagg DJ, Karpodinis G, Bishop SR (1999) An experimental study of the impulse response of a vibro-impacting cantilever beam. J Sound Vib 228(2):243–264CrossRef Wagg DJ, Karpodinis G, Bishop SR (1999) An experimental study of the impulse response of a vibro-impacting cantilever beam. J Sound Vib 228(2):243–264CrossRef
18.
Zurück zum Zitat Bhattacharjee A, Chatterjee A (2020) Restitution modeling in vibration-dominated impacts using energy minimization under outward constraints. Int J Mech Sci 166:105215CrossRef Bhattacharjee A, Chatterjee A (2020) Restitution modeling in vibration-dominated impacts using energy minimization under outward constraints. Int J Mech Sci 166:105215CrossRef
19.
Zurück zum Zitat Kenny S, Pegg N, Taheri F (2000) Dynamic elastic buckling of a slender beam with geometric imperfections subject to an axial impulse. Finite Elem Anal Des 35(3):227–246CrossRefMATH Kenny S, Pegg N, Taheri F (2000) Dynamic elastic buckling of a slender beam with geometric imperfections subject to an axial impulse. Finite Elem Anal Des 35(3):227–246CrossRefMATH
20.
Zurück zum Zitat Langhaar HL (1951) Dimensional analysis and theory of models, John Wiley & Sons (reprinted in 1987 by the Robert E. Krieger Publishing Company, Malabar Langhaar HL (1951) Dimensional analysis and theory of models, John Wiley & Sons (reprinted in 1987 by the Robert E. Krieger Publishing Company, Malabar
21.
Zurück zum Zitat Hagedorn P, Dasgupta A (2007) Vibration and waves in continuous mechanical systems. John Wiley, West SussexCrossRefMATH Hagedorn P, Dasgupta A (2007) Vibration and waves in continuous mechanical systems. John Wiley, West SussexCrossRefMATH
22.
Zurück zum Zitat Gopalakrishnan S (2017) Wave propagation in materials and structures. CRC Press, Boca RatonMATH Gopalakrishnan S (2017) Wave propagation in materials and structures. CRC Press, Boca RatonMATH
23.
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH
24.
Zurück zum Zitat Bender CM, Orszag S (1999) Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory. Springer, BerlinCrossRefMATH Bender CM, Orszag S (1999) Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory. Springer, BerlinCrossRefMATH
25.
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME (2000) Concepts and applications of finite element analysis. John Wiley, New YorkMATH Cook RD, Malkus DS, Plesha ME (2000) Concepts and applications of finite element analysis. John Wiley, New YorkMATH
26.
Zurück zum Zitat Piché R (1995) An L-stable Rosenbrock method for step-by-step time integration in structural dynamics. Comput Methods Appl Mech Eng 126(3–4):343–354MathSciNetCrossRefMATH Piché R (1995) An L-stable Rosenbrock method for step-by-step time integration in structural dynamics. Comput Methods Appl Mech Eng 126(3–4):343–354MathSciNetCrossRefMATH
27.
Zurück zum Zitat Goswami B, Chatterjee A (2023) Semi-implicit integration and data-driven model order reduction in structural dynamics with hysteresis. J Comput Nonlinear Dyn ASME 18(5):051002CrossRef Goswami B, Chatterjee A (2023) Semi-implicit integration and data-driven model order reduction in structural dynamics with hysteresis. J Comput Nonlinear Dyn ASME 18(5):051002CrossRef
Metadaten
Titel
Short time angular impulse response of Rayleigh beams
verfasst von
Bidhayak Goswami
K. R. Jayaprakash
Anindya Chatterjee
Publikationsdatum
01.12.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2023
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10302-6

Weitere Artikel der Ausgabe 1/2023

Journal of Engineering Mathematics 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.