Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

27.05.2021 | Original Article

Signals classification based on IA-optimal CNN

verfasst von: Yalun Zhang, Wenjing Yu, Lin He, Lilin Cui, Guo Cheng

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The versatility of the existing A-optimal-based CNN for solving multiple types of signals classification problems has not been verified by different signals datasets. Moreover, the existing A-optimal-based CNN uses a simplified approximate function as the optimization objective function instead of precise analytical function, which affects the signals classification accuracy to a certain extent. In this paper, a classification method called IA-optimal CNN is proposed. To improve the stability of the classifier, the trace of the covariance matrix of the weights of the fully connected layer is used as the optimization objective function, and the parameter optimization model is established without any simplification of the optimization objective function. In addition, to avoid the difficulty of not being able to obtain the analytical expression formula of the partial derivative of the inverse matrix with regard to the networks parameters, a novel dual function is introduced to transform the optimization problem into an equivalent binary function optimization problem. Furthermore, based on the above analytical solution results, the parameters are updated using the alternate iterative optimization method and the accurate weight update formula is deduced in detail. Five signals datasets are used to test the universality of the IA-optimal CNN in signals classification fields. The performance of IA-optimal CNN is showed, and the experimental results are compared with the existing A-optimal-based classification algorithm. Lastly, the following conclusion is proved theoretically: For the A-optimal-based CNN, the trace of the covariance matrix will continue to decrease and approach a convergence value in the iterative process, but it is impossible for the networks to strictly reach the A-optimal state.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jia F, Lei Y, Na Lu, Xing S (2018) Deep normalized convolutional neural networks for imbalanced fault classification of machinery and its understanding via visualization. Mech Syst Sign Process 110:349–367CrossRef Jia F, Lei Y, Na Lu, Xing S (2018) Deep normalized convolutional neural networks for imbalanced fault classification of machinery and its understanding via visualization. Mech Syst Sign Process 110:349–367CrossRef
2.
Zurück zum Zitat Plakias S, Boutalis YS (2020) Fault detection and identification of rolling element bearings with Attentive Dense CNN. Neurocomput 405:208–217CrossRef Plakias S, Boutalis YS (2020) Fault detection and identification of rolling element bearings with Attentive Dense CNN. Neurocomput 405:208–217CrossRef
3.
Zurück zum Zitat Han T, Tian ZhiXin, Yin Z, Tan ACC (2020) Bearing fault identifcation based on convolutional neural networks by diferent input modes. J Brazilian Soc Mech Sci Eng 42:474–484CrossRef Han T, Tian ZhiXin, Yin Z, Tan ACC (2020) Bearing fault identifcation based on convolutional neural networks by diferent input modes. J Brazilian Soc Mech Sci Eng 42:474–484CrossRef
4.
Zurück zum Zitat Yang Y, Zheng H, Li Y, Minqiang Xu, Chen Y (2019) A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural networks. ISA Trans 91:235–252CrossRef Yang Y, Zheng H, Li Y, Minqiang Xu, Chen Y (2019) A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural networks. ISA Trans 91:235–252CrossRef
5.
Zurück zum Zitat Cheng C, Zhou B, Ma G, Dongrui Wu, Yuan Ye (2020) Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomput 409:35–45CrossRef Cheng C, Zhou B, Ma G, Dongrui Wu, Yuan Ye (2020) Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomput 409:35–45CrossRef
6.
Zurück zum Zitat Zifei Xu, Li C, Yang Y (2020) Fault diagnosis of rolling bearing of wind turbines based on the variational mode decomposition and deep convolutional neural networks. Appl Soft Comput J 95:106515CrossRef Zifei Xu, Li C, Yang Y (2020) Fault diagnosis of rolling bearing of wind turbines based on the variational mode decomposition and deep convolutional neural networks. Appl Soft Comput J 95:106515CrossRef
7.
Zurück zum Zitat Huang W, Junsheng Cheng Yu, Yang GG (2019) An improved deep convolutional neural networks with multi-scale information for bearing fault diagnosis. Neurocomput 359:77–92CrossRef Huang W, Junsheng Cheng Yu, Yang GG (2019) An improved deep convolutional neural networks with multi-scale information for bearing fault diagnosis. Neurocomput 359:77–92CrossRef
8.
Zurück zum Zitat Hao S, Ge F-X, Li Y, Jiang J (2020) Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks. Measure 159:107802 Hao S, Ge F-X, Li Y, Jiang J (2020) Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks. Measure 159:107802
9.
Zurück zum Zitat Chen Z, Mauricio A, Li W, Gryllias K (2020) A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech Syst Sign Process 140:106683CrossRef Chen Z, Mauricio A, Li W, Gryllias K (2020) A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech Syst Sign Process 140:106683CrossRef
10.
Zurück zum Zitat Ma Y, Jia X, Bai H, Liu G, Wang G, Guo C, Wang S (2019) A new fault diagnosis method based on convolutional neural networks and compressive sensing. J Mech Sci Technol 33:5177–5188CrossRef Ma Y, Jia X, Bai H, Liu G, Wang G, Guo C, Wang S (2019) A new fault diagnosis method based on convolutional neural networks and compressive sensing. J Mech Sci Technol 33:5177–5188CrossRef
11.
Zurück zum Zitat Zhong S-S, Song Fu, Lin L (2019) A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measure 137:435–453 Zhong S-S, Song Fu, Lin L (2019) A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measure 137:435–453
12.
Zurück zum Zitat Wen L, Gao L, Li X, Wang L, Zhu J (2018) A jointed signals analysis and convolutional neural networks method for fault diagnosis. Procedia CIRP 72:1084–1087CrossRef Wen L, Gao L, Li X, Wang L, Zhu J (2018) A jointed signals analysis and convolutional neural networks method for fault diagnosis. Procedia CIRP 72:1084–1087CrossRef
13.
Zurück zum Zitat Wang S, Xiang J, Zhong Y, Zhou Y (2017) Convolutional neural networks-based hidden Markov models for rolling element bearing fault identification. Knowl-Based Syst pp 1–12 Wang S, Xiang J, Zhong Y, Zhou Y (2017) Convolutional neural networks-based hidden Markov models for rolling element bearing fault identification. Knowl-Based Syst pp 1–12
15.
Zurück zum Zitat Chen Lu, Wang Z, Zhou Bo (2017) Intelligent fault diagnosis of rolling bearing using hierarchical convolutional networks based health state classification. Adv Eng Inform 32:139–151CrossRef Chen Lu, Wang Z, Zhou Bo (2017) Intelligent fault diagnosis of rolling bearing using hierarchical convolutional networks based health state classification. Adv Eng Inform 32:139–151CrossRef
16.
Zurück zum Zitat Demir F, Turkoglu M, Aslan M, Sengur A (2020) A new pyramidal concatenated CNN approach for environmental sound classification. Appl Acoust 170:107520CrossRef Demir F, Turkoglu M, Aslan M, Sengur A (2020) A new pyramidal concatenated CNN approach for environmental sound classification. Appl Acoust 170:107520CrossRef
17.
Zurück zum Zitat Abdoli S, Cardinal P, Koerich AL (2019) End-to-end environmental sound classification using a 1D convolutional neural networks. Expert Syst Appl 136:252–263CrossRef Abdoli S, Cardinal P, Koerich AL (2019) End-to-end environmental sound classification using a 1D convolutional neural networks. Expert Syst Appl 136:252–263CrossRef
18.
Zurück zum Zitat Chen Y, Guo Q, Liang X, Wang J, Qian Y (2019) Environmental sound classification with dilated convolutions. Appl Acoust 148:123–132CrossRef Chen Y, Guo Q, Liang X, Wang J, Qian Y (2019) Environmental sound classification with dilated convolutions. Appl Acoust 148:123–132CrossRef
19.
Zurück zum Zitat Francesco B, Giacomo C, Grazia LS et al (2020) A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw 108:331–338 Francesco B, Giacomo C, Grazia LS et al (2020) A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw 108:331–338
20.
Zurück zum Zitat Deng M, Meng T, Cao J, Wang S, Zhang J, Fan H (2020) Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Netw 130:22–32CrossRef Deng M, Meng T, Cao J, Wang S, Zhang J, Fan H (2020) Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Netw 130:22–32CrossRef
21.
Zurück zum Zitat Demir F, Şengür A, Bajaj V, Polat K (2019) Towards the classification of heart sounds based on convolutional deep neural networks. Health Inf Sci Syst 7:16–24CrossRef Demir F, Şengür A, Bajaj V, Polat K (2019) Towards the classification of heart sounds based on convolutional deep neural networks. Health Inf Sci Syst 7:16–24CrossRef
23.
Zurück zum Zitat Blankertz B, Muller KR, Krusienski DJ (2006) The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14:153–159CrossRef Blankertz B, Muller KR, Krusienski DJ (2006) The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14:153–159CrossRef
24.
Zurück zum Zitat Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11:113–116CrossRef Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11:113–116CrossRef
25.
Zurück zum Zitat Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523CrossRef Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523CrossRef
26.
Zurück zum Zitat Pfurtscheller G, Neuper C, Guger C et al (2000) Current TRENds in Graz brain-computer interface (BCI) research. Rehabil Eng 8:216–219CrossRef Pfurtscheller G, Neuper C, Guger C et al (2000) Current TRENds in Graz brain-computer interface (BCI) research. Rehabil Eng 8:216–219CrossRef
27.
Zurück zum Zitat Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148CrossRef Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148CrossRef
28.
Zurück zum Zitat Mingai Li, Meng Z, YanJun S (2016) A novel motor imagery EEG recognition method based on deep learning. Int Forum Manage Edu Inf Tech Appl 1:728–733 Mingai Li, Meng Z, YanJun S (2016) A novel motor imagery EEG recognition method based on deep learning. Int Forum Manage Edu Inf Tech Appl 1:728–733
29.
Zurück zum Zitat Kong NCL, Kaneshiro B, Yamins DLK, Norcia AM (2020) Time-resolved correspondences between deep neural networks layers and EEG measurements in object processing. Vision Res 172:27–45CrossRef Kong NCL, Kaneshiro B, Yamins DLK, Norcia AM (2020) Time-resolved correspondences between deep neural networks layers and EEG measurements in object processing. Vision Res 172:27–45CrossRef
31.
Zurück zum Zitat Vareka L (2020) Evaluation of convolutional neural networks using a large multi-subject P300 dataset. Biomed Sig Process Control 58:101837CrossRef Vareka L (2020) Evaluation of convolutional neural networks using a large multi-subject P300 dataset. Biomed Sig Process Control 58:101837CrossRef
32.
Zurück zum Zitat Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik 130:11–18CrossRef Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik 130:11–18CrossRef
33.
Zurück zum Zitat Sors A, Bonnet S, Mirek S, Vercueil L, Jean-Franc, ois Payen, (2018) A convolutional neural networks for sleep stage scoring from raw single-channel EEG. Biomed Signals Process Control 42:107–114CrossRef Sors A, Bonnet S, Mirek S, Vercueil L, Jean-Franc, ois Payen, (2018) A convolutional neural networks for sleep stage scoring from raw single-channel EEG. Biomed Signals Process Control 42:107–114CrossRef
35.
Zurück zum Zitat Ding Ao, Zhang Y, Zhu L, Yanping Du, Ma L (2020) Recognition method research on rough handling of express parcels based on acceleration features and CNN. Measurement 163:107942CrossRef Ding Ao, Zhang Y, Zhu L, Yanping Du, Ma L (2020) Recognition method research on rough handling of express parcels based on acceleration features and CNN. Measurement 163:107942CrossRef
36.
Zurück zum Zitat Hong L, Liu X, Zuo H (2019) Compound faults diagnosis based on customized balanced multiwavelets and adaptive maximum correlated kurtosis deconvolution. Measure 146:87–100 Hong L, Liu X, Zuo H (2019) Compound faults diagnosis based on customized balanced multiwavelets and adaptive maximum correlated kurtosis deconvolution. Measure 146:87–100
37.
Zurück zum Zitat Yonggang Xu, Zhang K, Ma C, Cui L, Tian W (2019) Adaptive Kurtogram and its applications in rolling bearing fault diagnosis. Mech Syst Signals Process 130:87–107CrossRef Yonggang Xu, Zhang K, Ma C, Cui L, Tian W (2019) Adaptive Kurtogram and its applications in rolling bearing fault diagnosis. Mech Syst Signals Process 130:87–107CrossRef
38.
Zurück zum Zitat Li J, Yao X, Wang H, Zhang J (2019) Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis. Mech Syst Sig Process 126:568–589CrossRef Li J, Yao X, Wang H, Zhang J (2019) Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis. Mech Syst Sig Process 126:568–589CrossRef
39.
Zurück zum Zitat Chen F, Muhammad K, Wang S-H (2020) Three-dimensional reconstruction of CT image features based on multi-threaded deep learning calculation. Pattern Recogn Lett 136:309–315CrossRef Chen F, Muhammad K, Wang S-H (2020) Three-dimensional reconstruction of CT image features based on multi-threaded deep learning calculation. Pattern Recogn Lett 136:309–315CrossRef
43.
Zurück zum Zitat Shirakura T, Tong WP (1996) Weighted a-optimal for fractional 2 m factorial designs of resolution V. J Stat Plan Inference 56:243–256MATHCrossRef Shirakura T, Tong WP (1996) Weighted a-optimal for fractional 2 m factorial designs of resolution V. J Stat Plan Inference 56:243–256MATHCrossRef
44.
45.
Zurück zum Zitat Limmun W, Borkowski JJ, Chomtee B (2018) Weighted a-optimal criterion for generating robust mixture designs. Comput Ind Eng 125:348–356CrossRef Limmun W, Borkowski JJ, Chomtee B (2018) Weighted a-optimal criterion for generating robust mixture designs. Comput Ind Eng 125:348–356CrossRef
46.
Zurück zum Zitat Hajiyev Ch (2010) Determination of optimum measurement points via A-optimal criterion for the calibration of measurement apparatus. Measure 43:563–569 Hajiyev Ch (2010) Determination of optimum measurement points via A-optimal criterion for the calibration of measurement apparatus. Measure 43:563–569
47.
Zurück zum Zitat López-Fidalgo J, Rivas-López MJ, Fernández-Garzón B (2007) A-optimal standardized through the coefficient of variation. Commun Stat Theor Methods 36(4):781–792MATHCrossRef López-Fidalgo J, Rivas-López MJ, Fernández-Garzón B (2007) A-optimal standardized through the coefficient of variation. Commun Stat Theor Methods 36(4):781–792MATHCrossRef
48.
Zurück zum Zitat He X, Zhang C, Zhang L, Li X (2016) A-optimal projection for image representation. IEEE Trans Pattern Anal Mach Intell 38:1009–1015CrossRef He X, Zhang C, Zhang L, Li X (2016) A-optimal projection for image representation. IEEE Trans Pattern Anal Mach Intell 38:1009–1015CrossRef
49.
Zurück zum Zitat Liu X, Wang J, Yin M, Edwards B, Xu P (2015) Supervised learning of sparse context reconstruction coefficients for data representation and classification. Neural Comput Appl 1:1–9 Liu X, Wang J, Yin M, Edwards B, Xu P (2015) Supervised learning of sparse context reconstruction coefficients for data representation and classification. Neural Comput Appl 1:1–9
50.
Zurück zum Zitat Li P, Bu J, Chen C, Wang C, Cai D (2013) Subspace learning via locally constrained a-optimal nonnegative projection. Neuro-comput 115:49–62 Li P, Bu J, Chen C, Wang C, Cai D (2013) Subspace learning via locally constrained a-optimal nonnegative projection. Neuro-comput 115:49–62
51.
Zurück zum Zitat Yang Z, Liu H, Cai D, Wu Z (2016) A-optimal non-negative projection with hessian regularization. Neurocomput 174:838–849CrossRef Yang Z, Liu H, Cai D, Wu Z (2016) A-optimal non-negative projection with hessian regularization. Neurocomput 174:838–849CrossRef
52.
Zurück zum Zitat Yin Z, Kong D, Shao G, Ning X, Jin W, Wang J-Y (2018) A-optimal convolutional neural networks. Neural Comput Appl 30:2295–2304CrossRef Yin Z, Kong D, Shao G, Ning X, Jin W, Wang J-Y (2018) A-optimal convolutional neural networks. Neural Comput Appl 30:2295–2304CrossRef
55.
Zurück zum Zitat Shao S, McAleer S, Yan R et al (2018) Highly-accurate machine fault diagnosis using deep transfer learning. IEEE Trans Ind Inform 15(4):2446–2455CrossRef Shao S, McAleer S, Yan R et al (2018) Highly-accurate machine fault diagnosis using deep transfer learning. IEEE Trans Ind Inform 15(4):2446–2455CrossRef
56.
Zurück zum Zitat Wang S-H, Muhammad K, Hong J et al (2020) Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput Appl 32:665–680CrossRef Wang S-H, Muhammad K, Hong J et al (2020) Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput Appl 32:665–680CrossRef
60.
Zurück zum Zitat Zhang Y-D, Dong Z, Wang S-H et al (2020) Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf Fus 64:149–187CrossRef Zhang Y-D, Dong Z, Wang S-H et al (2020) Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf Fus 64:149–187CrossRef
62.
Zurück zum Zitat Izonin I, Kryvinska N, Tkachenko R et al (2019) An extended-input GRNN and its application. Proced Comput Sci 160:578–583CrossRef Izonin I, Kryvinska N, Tkachenko R et al (2019) An extended-input GRNN and its application. Proced Comput Sci 160:578–583CrossRef
63.
Zurück zum Zitat Tkachenko R, Mishchuk O, Izonin I et al (2019) A non-iterative neural-like framework for missing data imputation. Proced Comput Sci 155:319–326CrossRef Tkachenko R, Mishchuk O, Izonin I et al (2019) A non-iterative neural-like framework for missing data imputation. Proced Comput Sci 155:319–326CrossRef
64.
Zurück zum Zitat Izonin I, Kryvinska N, Tkachenko R et al (2019) An approach towards missing data recovery within IoT smart system. Procedia Computer Science 155:11–18CrossRef Izonin I, Kryvinska N, Tkachenko R et al (2019) An approach towards missing data recovery within IoT smart system. Procedia Computer Science 155:11–18CrossRef
65.
Zurück zum Zitat Tkachenko R, Izonin I, Kryvinska N et al (2020) An Approach towards Increasing Prediction Accuracy for the Recovery of Missing IoT Data Based on the GRNN-SGTM Ensemble. Sens 20(9):2625CrossRef Tkachenko R, Izonin I, Kryvinska N et al (2020) An Approach towards Increasing Prediction Accuracy for the Recovery of Missing IoT Data Based on the GRNN-SGTM Ensemble. Sens 20(9):2625CrossRef
66.
Zurück zum Zitat Izonin I, Tkachenko R, Kryvinska N et al (2019) Recovery of incomplete IoT sensed data using high-performance extended-input neural-like structure. Proced Comput Sci 160:521–526CrossRef Izonin I, Tkachenko R, Kryvinska N et al (2019) Recovery of incomplete IoT sensed data using high-performance extended-input neural-like structure. Proced Comput Sci 160:521–526CrossRef
Metadaten
Titel
Signals classification based on IA-optimal CNN
verfasst von
Yalun Zhang
Wenjing Yu
Lin He
Lilin Cui
Guo Cheng
Publikationsdatum
27.05.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05736-x

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe