Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2014

01.05.2014 | Original Paper

Silica sol–gel chemistry: creating materials and architectures for energy generation and storage

verfasst von: Daniel Membreno, Leland Smith, Bruce Dunn

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is widespread recognition that the use of energy in the twenty-first century must be sustainable. Because of its extraordinary flexibility, silica sol–gel chemistry offers the opportunity to create the novel materials and architectures which can lead to significant advances in renewable energy and energy storage technologies. In this paper, we review some of the significant contributions of silica sol–gel chemistry to these fields with particular emphasis on electrolytes and separators where sol–gel approaches to functionalization and encapsulation have been of central importance. Examples are presented in the areas of dye-sensitized solar cells, biofuel cells, proton exchange membrane fuel cells, redox flow batteries and electrochemical energy storage. Original work is also included for the sol–gel encapsulation of a room temperature ionic liquid to create a solid state electrolyte for electrochemical capacitors. In view of the critical importance of energy and the versatility of the sol–gel process, we expect the sol–gel field to play an increasingly important role in the development of sustainable energy generation and storage technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
5.
Zurück zum Zitat Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRef Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRef
7.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego
9.
Zurück zum Zitat Cho T-Y, Ko K-W, Yoon S-G, et al. (2013) Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Curr Appl Phys 13:1391–1396. doi:10.1016/j.cap.2013.04.012 Cho T-Y, Ko K-W, Yoon S-G, et al. (2013) Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Curr Appl Phys 13:1391–1396. doi:10.​1016/​j.​cap.​2013.​04.​012
10.
Zurück zum Zitat Aparicio M, Jitianu A, Klein LC (2012) Advances in sol–gel derived materials and technologies. Springer, Berlin Aparicio M, Jitianu A, Klein LC (2012) Advances in sol–gel derived materials and technologies. Springer, Berlin
11.
12.
Zurück zum Zitat Sauvage F, Chen D, Comte P et al (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4:4420–4425CrossRef Sauvage F, Chen D, Comte P et al (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4:4420–4425CrossRef
14.
Zurück zum Zitat Li P, Wu J, Hao S et al (2010) Quasi-solid state dye sensitized solar cells based on the cross-linked poly (ethylene glycol) electrolyte with tetraethoxysilane. J Appl Polym Sci 120(3):1752–1757. doi:10.1002/app CrossRef Li P, Wu J, Hao S et al (2010) Quasi-solid state dye sensitized solar cells based on the cross-linked poly (ethylene glycol) electrolyte with tetraethoxysilane. J Appl Polym Sci 120(3):1752–1757. doi:10.​1002/​app CrossRef
15.
Zurück zum Zitat Wang P, Zakeeruddin SM, Comte P et al (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167. doi:10.1021/ja029294+ CrossRef Wang P, Zakeeruddin SM, Comte P et al (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167. doi:10.​1021/​ja029294+ CrossRef
17.
Zurück zum Zitat Stathatos E, Lianos P (2003) A quasi-solid-state dye-sensitized solar cell based on a sol–gel nanocomposite electrolyte containing ionic liquid. Chem Mater 102:1825–1829 Stathatos E, Lianos P (2003) A quasi-solid-state dye-sensitized solar cell based on a sol–gel nanocomposite electrolyte containing ionic liquid. Chem Mater 102:1825–1829
22.
26.
Zurück zum Zitat Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218CrossRef Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218CrossRef
27.
Zurück zum Zitat Urbanová V, Etienne M, Walcarius A (2013) One step deposition of sol–gel carbon nanotubes biocomposite for reagentless electrochemical devices. Electroanalysis 25:85–93. doi:10.1002/elan.201200407 CrossRef Urbanová V, Etienne M, Walcarius A (2013) One step deposition of sol–gel carbon nanotubes biocomposite for reagentless electrochemical devices. Electroanalysis 25:85–93. doi:10.​1002/​elan.​201200407 CrossRef
31.
33.
Zurück zum Zitat Ladewig BP, Knott RB, Hill AJ et al (2007) Physical and electrochemical characterization of nanocomposite membranes of Nafion and functionalized silicon oxide. Chem Mater 19:2372–2381. doi:10.1021/cm0628698 Ladewig BP, Knott RB, Hill AJ et al (2007) Physical and electrochemical characterization of nanocomposite membranes of Nafion and functionalized silicon oxide. Chem Mater 19:2372–2381. doi:10.​1021/​cm0628698
34.
Zurück zum Zitat Mauritz K, Warren R (1989) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 1. Infrared spectroscopic studies. Macromolecules 1734:1730–1734CrossRef Mauritz K, Warren R (1989) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 1. Infrared spectroscopic studies. Macromolecules 1734:1730–1734CrossRef
37.
38.
40.
Zurück zum Zitat Bagotsky VS (2012) Fuel cells: problems and solutions. John Wiley & Sons, Hoboken Bagotsky VS (2012) Fuel cells: problems and solutions. John Wiley & Sons, Hoboken
41.
Zurück zum Zitat Xiao L, Zhang H, Scanlon E (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 16:5328–5333 Xiao L, Zhang H, Scanlon E (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 16:5328–5333
46.
48.
Zurück zum Zitat Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRef Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRef
54.
Zurück zum Zitat O’Mahony A, Silvester D (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891CrossRef O’Mahony A, Silvester D (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891CrossRef
56.
Zurück zum Zitat Kurig H, Romann T, Jänes A, Lust E (2010) Electrochemical characteristics of titanium carbide derived carbon| 1-ethyl-3-methylimidazolium tetrafluoroborate electrical double layer capacitors. ECS Trans 25:15–23CrossRef Kurig H, Romann T, Jänes A, Lust E (2010) Electrochemical characteristics of titanium carbide derived carbon| 1-ethyl-3-methylimidazolium tetrafluoroborate electrical double layer capacitors. ECS Trans 25:15–23CrossRef
57.
Zurück zum Zitat Echelmeyer T, Meyer H, van Wüllen L (2009) Novel ternary composite electrolytes: Li ion conducting ionic liquids in silica glass. Chem Mater 21(11):2280–2285 Echelmeyer T, Meyer H, van Wüllen L (2009) Novel ternary composite electrolytes: Li ion conducting ionic liquids in silica glass. Chem Mater 21(11):2280–2285
59.
Zurück zum Zitat Néouze M, Bideau J, Gaveau P et al (2006) Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater 18:3931–3936 Néouze M, Bideau J, Gaveau P et al (2006) Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater 18:3931–3936
60.
61.
Zurück zum Zitat Bellayer S, Viau L, Tebby Z, et al. (2009) Immobilization of ionic liquids in translucent tin dioxide monoliths by sol–gel processing. Dalton Trans 2009:1307–1313. doi:10.1039/b814978j Bellayer S, Viau L, Tebby Z, et al. (2009) Immobilization of ionic liquids in translucent tin dioxide monoliths by sol–gel processing. Dalton Trans 2009:1307–1313. doi:10.​1039/​b814978j
62.
Zurück zum Zitat Davenport M, Rodriguez A, Shea K, Siwy Z (2009) Squeezing ionic liquids through nanopores. Nano Lett 9:2125–2128CrossRef Davenport M, Rodriguez A, Shea K, Siwy Z (2009) Squeezing ionic liquids through nanopores. Nano Lett 9:2125–2128CrossRef
63.
Zurück zum Zitat Le Bideau J, Ducros J-B, Soudan P, Guyomard D (2011) Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv Funct Mater 21:4073–4078. doi:10.1002/adfm.201100774 CrossRef Le Bideau J, Ducros J-B, Soudan P, Guyomard D (2011) Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv Funct Mater 21:4073–4078. doi:10.​1002/​adfm.​201100774 CrossRef
66.
Zurück zum Zitat Sharp K (1994) A two-component, non-aqueous route to silica gel. J Sol–Gel Sci Technol 41:35–41CrossRef Sharp K (1994) A two-component, non-aqueous route to silica gel. J Sol–Gel Sci Technol 41:35–41CrossRef
Metadaten
Titel
Silica sol–gel chemistry: creating materials and architectures for energy generation and storage
verfasst von
Daniel Membreno
Leland Smith
Bruce Dunn
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2014
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3299-3

Weitere Artikel der Ausgabe 2/2014

Journal of Sol-Gel Science and Technology 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.