Skip to main content

2014 | OriginalPaper | Buchkapitel

Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

verfasst von : Robert A. Wolkow, Lucian Livadaru, Jason Pitters, Marco Taucer, Paul Piva, Mark Salomons, Martin Cloutier, Bruno V. C. Martins

Erschienen in: Field-Coupled Nanocomputing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, B.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, B.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
2.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
3.
Zurück zum Zitat Orlov, A.O., Kummamuru, R., Timler, J., Lent, C.S., Snider, G.L., Bernstein, G.H.: Experimental Studies of Quantum Dot Cellular Automata Devices. Research Signpost, Trivandrum (2004) Orlov, A.O., Kummamuru, R., Timler, J., Lent, C.S., Snider, G.L., Bernstein, G.H.: Experimental Studies of Quantum Dot Cellular Automata Devices. Research Signpost, Trivandrum (2004)
4.
Zurück zum Zitat Yadavalli, K.K., Orlov, A.O., Timler, J.P., Lent, C.S., Snider, G.L.: Fanout gate in quantum-dot cellular automata. Nanotechnology 18(37), 375401 (2007)CrossRef Yadavalli, K.K., Orlov, A.O., Timler, J.P., Lent, C.S., Snider, G.L.: Fanout gate in quantum-dot cellular automata. Nanotechnology 18(37), 375401 (2007)CrossRef
5.
Zurück zum Zitat Tang, Y., Orlov, A.O., Snider, G.L., Fay, P.J.: Towards real-time testing of clocked quantum dot cellular automata. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 76–79. IEEE (2009) Tang, Y., Orlov, A.O., Snider, G.L., Fay, P.J.: Towards real-time testing of clocked quantum dot cellular automata. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 76–79. IEEE (2009)
6.
Zurück zum Zitat Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 46–49. IEEE (2009) Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 46–49. IEEE (2009)
7.
Zurück zum Zitat Foley, E.T., Kam, A.F., Lyding, J.W., Avouris, P.: Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100). Phys. Rev. Lett. 80(6), 1336 (1998)CrossRef Foley, E.T., Kam, A.F., Lyding, J.W., Avouris, P.: Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100). Phys. Rev. Lett. 80(6), 1336 (1998)CrossRef
8.
Zurück zum Zitat Shen, T.-C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, P., Walkup, R.E.: Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995)CrossRef Shen, T.-C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, P., Walkup, R.E.: Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995)CrossRef
9.
Zurück zum Zitat Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B.Y.-K., Perez-Murano, F., Grey, F.: STM-induced hydrogen desorption via a hole resonance. Phys. Rev. Lett. 80(12), 2618 (1998)CrossRef Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B.Y.-K., Perez-Murano, F., Grey, F.: STM-induced hydrogen desorption via a hole resonance. Phys. Rev. Lett. 80(12), 2618 (1998)CrossRef
10.
Zurück zum Zitat Soukiassian, L., Mayne, A., Carbone, M., Dujardin, G.: Atomic-scale desorption of H atoms from the Si(100)-\(2 \times 1\): H surface: inelastic electron interactions. Phys. Rev. B 68(3), 035303 (2003)CrossRef Soukiassian, L., Mayne, A., Carbone, M., Dujardin, G.: Atomic-scale desorption of H atoms from the Si(100)-\(2 \times 1\): H surface: inelastic electron interactions. Phys. Rev. B 68(3), 035303 (2003)CrossRef
11.
Zurück zum Zitat Kuramochi, H., Uchida, H., Kuwahara, Y., Watanabe, K., Aono, M.: Site-independent adsorption of hydrogen atoms deposited from a scanning tunneling microscope tip onto a Si(111)-\(7 \times 7\) surface. Jpn. J. Appl. Phys. 36(10A), L1343–L1346 (1997)CrossRef Kuramochi, H., Uchida, H., Kuwahara, Y., Watanabe, K., Aono, M.: Site-independent adsorption of hydrogen atoms deposited from a scanning tunneling microscope tip onto a Si(111)-\(7 \times 7\) surface. Jpn. J. Appl. Phys. 36(10A), L1343–L1346 (1997)CrossRef
12.
Zurück zum Zitat Pitters, J.L., Livadaru, L., Haider, M.B., Wolkow, R.A.: Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134(6), 064712 (2011)CrossRef Pitters, J.L., Livadaru, L., Haider, M.B., Wolkow, R.A.: Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134(6), 064712 (2011)CrossRef
13.
Zurück zum Zitat Tong, X., Wolkow, R.A.: Electron-induced H atom desorption patterns created with a scanning tunneling microscope: implications for controlled atomic-scale patterning on H:Si(100). Surf. Sci. 600(16), L199–L203 (2006)CrossRef Tong, X., Wolkow, R.A.: Electron-induced H atom desorption patterns created with a scanning tunneling microscope: implications for controlled atomic-scale patterning on H:Si(100). Surf. Sci. 600(16), L199–L203 (2006)CrossRef
14.
Zurück zum Zitat Haider, M., Pitters, J.L., DiLabio, G., Livadaru, L., Mutus, J., Wolkow, R.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102(4), 046805 (2009)CrossRef Haider, M., Pitters, J.L., DiLabio, G., Livadaru, L., Mutus, J., Wolkow, R.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102(4), 046805 (2009)CrossRef
15.
Zurück zum Zitat Livadaru, L., Pitters, J.L., Taucer, M., Wolkow, R.A.: Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a hydrogenated silicon surface. Phys. Rev. B 84(20), 205416 (2011)CrossRef Livadaru, L., Pitters, J.L., Taucer, M., Wolkow, R.A.: Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a hydrogenated silicon surface. Phys. Rev. B 84(20), 205416 (2011)CrossRef
16.
Zurück zum Zitat Taucer, M., Livadaru, L., Piva, P.G., Achal, R., Labidi, H., Pitters, J.L., Wolkow, R.A.: Single electron charging dynamics of atomic silicon quantum dots on the H-Si(100) surface. arXiv:1305.3597 Taucer, M., Livadaru, L., Piva, P.G., Achal, R., Labidi, H., Pitters, J.L., Wolkow, R.A.: Single electron charging dynamics of atomic silicon quantum dots on the H-Si(100) surface. arXiv:​1305.​3597
17.
Zurück zum Zitat Oura, K., Lifshits, V.G., Saranin, A.A., Zotov, A.V., Katayama, M.: Hydrogen interaction with clean and modified silicon surfaces. Surf. Sci. Rep. 35, 1–69 (1999)CrossRef Oura, K., Lifshits, V.G., Saranin, A.A., Zotov, A.V., Katayama, M.: Hydrogen interaction with clean and modified silicon surfaces. Surf. Sci. Rep. 35, 1–69 (1999)CrossRef
18.
Zurück zum Zitat Lopinski, G.P., Wayner, D.D.M., Wolkow, R.A.: Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000)CrossRef Lopinski, G.P., Wayner, D.D.M., Wolkow, R.A.: Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000)CrossRef
19.
Zurück zum Zitat Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435(7042), 658–661 (2005)CrossRef Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435(7042), 658–661 (2005)CrossRef
20.
Zurück zum Zitat Piva, P.G., DiLabio, G.A., Pitters, J.L., Wolkow, R.A.: Electrostatically regulated atomic scale electroconductivity device Piva, P.G., DiLabio, G.A., Pitters, J.L., Wolkow, R.A.: Electrostatically regulated atomic scale electroconductivity device
21.
Zurück zum Zitat Shockley, W., et al.: Electrons and Holes in Semiconductors, vol. 1. van Nostrand, New York (1963) Shockley, W., et al.: Electrons and Holes in Semiconductors, vol. 1. van Nostrand, New York (1963)
22.
Zurück zum Zitat Baseer Haider, M., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots. arXiv:0807.0609 Baseer Haider, M., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots. arXiv:​0807.​0609
23.
Zurück zum Zitat Livadaru, L., Xue, P., Shaterzadeh-Yazdi, Z., DiLabio, G.A., Mutus, J., Pitters, J.L., Sanders, B.C., Wolkow, R.A.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12(8), 083018 (2010)CrossRef Livadaru, L., Xue, P., Shaterzadeh-Yazdi, Z., DiLabio, G.A., Mutus, J., Pitters, J.L., Sanders, B.C., Wolkow, R.A.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12(8), 083018 (2010)CrossRef
24.
Zurück zum Zitat Shaterzadeh-Yazdi, Z., Livadaru, L., Taucer, M., Mutus, J., Pitters, J.L., Wolkow, R.A., Sanders, B.C.: On measuring coherence in coupled dangling-bond dynamics (2013). arXiv:1305.6359 Shaterzadeh-Yazdi, Z., Livadaru, L., Taucer, M., Mutus, J., Pitters, J.L., Wolkow, R.A., Sanders, B.C.: On measuring coherence in coupled dangling-bond dynamics (2013). arXiv:​1305.​6359
25.
Zurück zum Zitat Piva, P.G., Wolkow, R.A., Kirczenow, G.: Nonlocal conductance modulation by molecules: scanning tunneling microscopy of substituted styrene heterostructures on H-terminated Si(100). Phys. Rev. Lett. 101(10), 106801 (2008)CrossRef Piva, P.G., Wolkow, R.A., Kirczenow, G.: Nonlocal conductance modulation by molecules: scanning tunneling microscopy of substituted styrene heterostructures on H-terminated Si(100). Phys. Rev. Lett. 101(10), 106801 (2008)CrossRef
26.
Zurück zum Zitat Kirczenow, G., Piva, P.G., Wolkow, R.A.: Modulation of electrical conduction through individual molecules on silicon by the electrostatic fields of nearby polar molecules: theory and experiment. Phys. Rev. B 80(3), 035309 (2009)CrossRef Kirczenow, G., Piva, P.G., Wolkow, R.A.: Modulation of electrical conduction through individual molecules on silicon by the electrostatic fields of nearby polar molecules: theory and experiment. Phys. Rev. B 80(3), 035309 (2009)CrossRef
27.
Zurück zum Zitat Tong, X., Wolkow, R.A.: Scanning tunneling microscopy characterization of low-profile crystalline \({\rm TiSi}_{2}\) microelectrodes on a Si(111) surface. Appl. Phys. Lett. 86(20), 203101 (2005)CrossRef Tong, X., Wolkow, R.A.: Scanning tunneling microscopy characterization of low-profile crystalline \({\rm TiSi}_{2}\) microelectrodes on a Si(111) surface. Appl. Phys. Lett. 86(20), 203101 (2005)CrossRef
28.
Zurück zum Zitat Palermo, V., Buchanan, M., Bezinger, A., Wolkow, R.A.: Lateral diffusion of titanium disilicide as a route to contacting hybrid Si/organic nanostructures. Appl. Phys. Lett. 81(19), 3636 (2002)CrossRef Palermo, V., Buchanan, M., Bezinger, A., Wolkow, R.A.: Lateral diffusion of titanium disilicide as a route to contacting hybrid Si/organic nanostructures. Appl. Phys. Lett. 81(19), 3636 (2002)CrossRef
29.
Zurück zum Zitat Pitters, J.L., Dogel, I.A., Wolkow, R.A.: Charge control of surface dangling bonds using nanoscale Schottky contacts. ACS Nano 5(3), 1984–1989 (2011)CrossRef Pitters, J.L., Dogel, I.A., Wolkow, R.A.: Charge control of surface dangling bonds using nanoscale Schottky contacts. ACS Nano 5(3), 1984–1989 (2011)CrossRef
30.
Zurück zum Zitat Zikovsky, J., Salomons, M.H., Dogel, S.A., Wolkow, R.A.: Silicon surface conductance investigated using a multiple-probe scanning tunneling microscope. In: Joachim, C. (ed.) Atomic Scale Interconnection Machines: Proceedings of the 1st AtMol European Workshop Singapore 28th–29th June 2011. Advances in Atom and Single Molecule Machines, vol. 1, pp. 167–180. Springer, Berlin (2012). ISBN 978-3-642-28171-6 Zikovsky, J., Salomons, M.H., Dogel, S.A., Wolkow, R.A.: Silicon surface conductance investigated using a multiple-probe scanning tunneling microscope. In: Joachim, C. (ed.) Atomic Scale Interconnection Machines: Proceedings of the 1st AtMol European Workshop Singapore 28th–29th June 2011. Advances in Atom and Single Molecule Machines, vol. 1, pp. 167–180. Springer, Berlin (2012). ISBN 978-3-642-28171-6
31.
Zurück zum Zitat Martins, B.V.C., Smeu, M., Guo, H., Wolkow, R.A.: Conductivity of Si(111)-\(7 \times 7\): the role of a single atomic step. arXiv:1310.1313 Martins, B.V.C., Smeu, M., Guo, H., Wolkow, R.A.: Conductivity of Si(111)-\(7 \times 7\): the role of a single atomic step. arXiv:​1310.​1313
32.
Zurück zum Zitat Martins, B.V.C., Wolkow, R.A.: (2013, in preparation) Martins, B.V.C., Wolkow, R.A.: (2013, in preparation)
33.
Zurück zum Zitat Lyding, J.W., Shen, T.C., Hubacek, J.R., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-\(2\times 1\) surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994)CrossRef Lyding, J.W., Shen, T.C., Hubacek, J.R., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-\(2\times 1\) surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994)CrossRef
34.
Zurück zum Zitat Raza, H.: Theoretical study of isolated dangling bonds, dangling bond wires, and dangling bond clusters on a H:Si(001)-(\(2 \times 1\)) surface. Phys. Rev. B 76(4), 045308 (2007)CrossRef Raza, H.: Theoretical study of isolated dangling bonds, dangling bond wires, and dangling bond clusters on a H:Si(001)-(\(2 \times 1\)) surface. Phys. Rev. B 76(4), 045308 (2007)CrossRef
35.
Zurück zum Zitat Ye, W., Min, K., Martin, P.P., Rockett, A.A., Aluru, N.R., Lyding, J.W.: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-\(2 \times 1\): H surface. Surf. Sci. 609, 147–151 (2013)CrossRef Ye, W., Min, K., Martin, P.P., Rockett, A.A., Aluru, N.R., Lyding, J.W.: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-\(2 \times 1\): H surface. Surf. Sci. 609, 147–151 (2013)CrossRef
36.
Zurück zum Zitat Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013)CrossRef Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013)CrossRef
37.
Zurück zum Zitat Jahromi, S.A.Z., Salomons, M., Sun, Q., Wolkow, R.A.: Prediction of the resonant frequency of piezoelectric tube scanners through three-dimensional finite element modeling of a tube assembly. Rev. Sci. Instrum. 79(7), 3 (2008) Jahromi, S.A.Z., Salomons, M., Sun, Q., Wolkow, R.A.: Prediction of the resonant frequency of piezoelectric tube scanners through three-dimensional finite element modeling of a tube assembly. Rev. Sci. Instrum. 79(7), 3 (2008)
38.
Zurück zum Zitat Randall, J.N., Von Ehr, J.R., Ballard, J.B., Owen, J.H.G., Fuchs, E.: Automated Scanning Tunneling Microscope image analysis of Si(100): H \(2 \times 1\) surfaces. Microelectron. Eng. 98, 214–217 (2012)CrossRef Randall, J.N., Von Ehr, J.R., Ballard, J.B., Owen, J.H.G., Fuchs, E.: Automated Scanning Tunneling Microscope image analysis of Si(100): H \(2 \times 1\) surfaces. Microelectron. Eng. 98, 214–217 (2012)CrossRef
39.
Zurück zum Zitat Hänninen, I., Takala, J.: Arithmetic design on quantum-dot cellular automata nanotechnology. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 43–52. Springer, Heidelberg (2008) CrossRef Hänninen, I., Takala, J.: Arithmetic design on quantum-dot cellular automata nanotechnology. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 43–52. Springer, Heidelberg (2008) CrossRef
40.
Zurück zum Zitat Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)CrossRef Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)CrossRef
41.
Zurück zum Zitat Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)CrossRef Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)CrossRef
42.
Zurück zum Zitat Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: Spectroscopy of a deterministic single-donor device in silicon. Proc. SPIE 8400, 840006 (2012)CrossRef Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: Spectroscopy of a deterministic single-donor device in silicon. Proc. SPIE 8400, 840006 (2012)CrossRef
43.
Zurück zum Zitat Tan, K.Y., Chan, K.W., Mottonen, M., Morello, A., Yang, C., van Donkelaar, J., Alves, A., Pirkkalainen, J.M., Jamieson, D.N., Clark, R.G., Dzurak, A.S.: Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10(1), 11–15 (2010)CrossRef Tan, K.Y., Chan, K.W., Mottonen, M., Morello, A., Yang, C., van Donkelaar, J., Alves, A., Pirkkalainen, J.M., Jamieson, D.N., Clark, R.G., Dzurak, A.S.: Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10(1), 11–15 (2010)CrossRef
44.
Zurück zum Zitat Kane, B.E.: Can we build a large-scale quantum computer using semiconductor materials? MRS Bull. 30, 105–110 (2005)CrossRef Kane, B.E.: Can we build a large-scale quantum computer using semiconductor materials? MRS Bull. 30, 105–110 (2005)CrossRef
45.
Zurück zum Zitat Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)CrossRef Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)CrossRef
46.
Zurück zum Zitat Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)CrossRef Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)CrossRef
Metadaten
Titel
Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics
verfasst von
Robert A. Wolkow
Lucian Livadaru
Jason Pitters
Marco Taucer
Paul Piva
Mark Salomons
Martin Cloutier
Bruno V. C. Martins
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-43722-3_3

Premium Partner