Skip to main content
Erschienen in: Fire Technology 1/2024

15.11.2023

Simple Estimates of the Most Adverse Fire Growth and Equivalent Fire Severity in Concrete Compartments for Structural Safety

verfasst von: Namita Nayak, Lakshmi Priya Subramanian, Brijesh Balachandran Nair

Erschienen in: Fire Technology | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents two facets of rationalizing natural fires in concrete compartments for structural fire safety . The paper proposes the rate of fire growth corresponding to the maximum possible peak temperature in a compartment, followed by an equation to estimate the equivalent severity between the standard and a natural fire using an energy-based approach. Standard fire curves, applied universally for all design conditions may over- or under-predict real compartment fires. Meanwhile, a full-fledged performance-based design is neither practical nor straightforward to employ in every design situation. The Eurocode parametric temperature–time curves enable engineers to account for specific compartment characteristics, including compartment geometry, building materials, fuel load, and ventilation. Given that different structural fire safety design approaches entail varying levels of complexity, this paper presents simple methods to estimate the worst-scenario compartment fire characteristics . Additionally, fire ratings are established only using standard fire curves, necessitating a scientific means of determining an equivalent severity between natural and standard fires. The energy-equivalence approach used in this paper to establish an equivalent fire severity yields more consistent results than traditional equivalent fire severity methods and empirical formulae for concrete compartments. The proposed equations are developed using simulations of compartment fires and provide insights into the ventilation characteristics that result in the worst-case scenario for both the rate of fire growth and the equivalent time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat ASTM E119 (2019) Standard test methods for fire tests of building construction and materials. ASTM International, West Conshohocken, PA ASTM E119 (2019) Standard test methods for fire tests of building construction and materials. ASTM International, West Conshohocken, PA
2.
Zurück zum Zitat ISO 834-1 (1999) Fire-resistance tests: elements of building construction—part 1.1: general requirements. ISO 834-1 (Amended 2012), Geneva ISO 834-1 (1999) Fire-resistance tests: elements of building construction—part 1.1: general requirements. ISO 834-1 (Amended 2012), Geneva
4.
Zurück zum Zitat EN 1993-1-2 (2005) Eurocode 3: design of steel structures-part 1–2: general rules—structural fire design [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC] EN 1993-1-2 (2005) Eurocode 3: design of steel structures-part 1–2: general rules—structural fire design [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]
5.
Zurück zum Zitat EN 1992-1-2 (2004) Eurocode 2: design of concrete structures-part 1–2: general rules—structural fire design.pdf [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC] EN 1992-1-2 (2004) Eurocode 2: design of concrete structures-part 1–2: general rules—structural fire design.pdf [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]
6.
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Introduction to heat transfer, 6th edn. John Wiley & Sons, New York Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Introduction to heat transfer, 6th edn. John Wiley & Sons, New York
11.
Zurück zum Zitat Banoth I, Agarwal A (2020) Effect of heating rate on bond behavior between steel and concrete at elevated temperatures. In: Subramaniam K, Khan M (eds) Advances in structural engineering. Lecture notes in civil engineering, vol 74. Springer, Singapore Banoth I, Agarwal A (2020) Effect of heating rate on bond behavior between steel and concrete at elevated temperatures. In: Subramaniam K, Khan M (eds) Advances in structural engineering. Lecture notes in civil engineering, vol 74. Springer, Singapore
12.
Zurück zum Zitat Lee JS, Xi Y, Willam K (2007) Strength and stiffness of concrete under heating and cooling treatments. In: Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures, Catania, 17–22 June 2007, pp 1709–1714 Lee JS, Xi Y, Willam K (2007) Strength and stiffness of concrete under heating and cooling treatments. In: Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures, Catania, 17–22 June 2007, pp 1709–1714
13.
Zurück zum Zitat Gernay T, Bamonte P (2022) Behavior and design of concrete structures under natural fire. ACI final report. ACI Foundation, Farmington Hills Gernay T, Bamonte P (2022) Behavior and design of concrete structures under natural fire. ACI final report. ACI Foundation, Farmington Hills
14.
Zurück zum Zitat Kodur VKR, Pakala P, Dwaikat MB (2010) Energy based time equivalent approach for evaluating fire resistance of reinforced concrete beams. Fire Saf J 45:211–220CrossRef Kodur VKR, Pakala P, Dwaikat MB (2010) Energy based time equivalent approach for evaluating fire resistance of reinforced concrete beams. Fire Saf J 45:211–220CrossRef
16.
Zurück zum Zitat Babrauskas V (2011) Glass breakage in fires. Fire Science and Technology Inc., Issaquah Babrauskas V (2011) Glass breakage in fires. Fire Science and Technology Inc., Issaquah
17.
Zurück zum Zitat Thomas P (1970) The fire resistance required to survive a burn out. Fire research notes 901. Fire Research Station, London Thomas P (1970) The fire resistance required to survive a burn out. Fire research notes 901. Fire Research Station, London
18.
Zurück zum Zitat Cadorin JF, Franssen JM, Pintea DI et al (2018) OZone 3.0.4 [Computer software]. University of Liege, Liege Cadorin JF, Franssen JM, Pintea DI et al (2018) OZone 3.0.4 [Computer software]. University of Liege, Liege
19.
Zurück zum Zitat FDS V6.7.9 (2022) Fire dynamics simulator. Developed by National Institute of Standards and Technology (NIST), U.S. Dept of Commerce and VTT Technical Research Centre of Finland FDS V6.7.9 (2022) Fire dynamics simulator. Developed by National Institute of Standards and Technology (NIST), U.S. Dept of Commerce and VTT Technical Research Centre of Finland
20.
Zurück zum Zitat EN 1991-1-2 (2002) Eurocode 1: actions on structures—part 1–2: general actions—actions on structures exposed to fire [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC] EN 1991-1-2 (2002) Eurocode 1: actions on structures—part 1–2: general actions—actions on structures exposed to fire [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]
21.
Zurück zum Zitat Khan AA, Usmani A, Torero JL (2021) Evolution of fire models for estimating structural fire-resistance. Fire Saf J 124:103367CrossRef Khan AA, Usmani A, Torero JL (2021) Evolution of fire models for estimating structural fire-resistance. Fire Saf J 124:103367CrossRef
23.
Zurück zum Zitat Gernay T, Dimia MS (2011) Structural behavior of concrete columns under natural fires including cooling down phase. In: International conference on recent advances in nonlinear models—structural concrete applications, University of Coimbra, Coimbra, 24–25 November 2011, pp 1–20 Gernay T, Dimia MS (2011) Structural behavior of concrete columns under natural fires including cooling down phase. In: International conference on recent advances in nonlinear models—structural concrete applications, University of Coimbra, Coimbra, 24–25 November 2011, pp 1–20
24.
Zurück zum Zitat Dimia MS, Guenfoud M, Gernay T, Franssen J (2011) Collapse of concrete columns during and after the cooling phase of a fire. Fire Prot Eng 21(4):245–263CrossRef Dimia MS, Guenfoud M, Gernay T, Franssen J (2011) Collapse of concrete columns during and after the cooling phase of a fire. Fire Prot Eng 21(4):245–263CrossRef
25.
Zurück zum Zitat Nyman JF (2002) Equivalent fire resistance ratings of construction elements exposed to realistic fires. Master’s thesis, University of Canterbury, Christchurch Nyman JF (2002) Equivalent fire resistance ratings of construction elements exposed to realistic fires. Master’s thesis, University of Canterbury, Christchurch
26.
Zurück zum Zitat Lennon T, Moore D (2003) The natural fire safety concept—full-scale tests at Cardington. Fire Saf J 38:623–643CrossRef Lennon T, Moore D (2003) The natural fire safety concept—full-scale tests at Cardington. Fire Saf J 38:623–643CrossRef
27.
Zurück zum Zitat Ariyanayagam AD, Mahendran M (2013) Fire safety of buildings based on realistic fire time-temperature curves. In: Manley K, Hampson K, Kajewski S (eds) Proceedings of the 19th International CIB World Building Congress, Brisbane 2013: Construction and Society. Queensland University of Technology, Brisbane, pp 1–13 Ariyanayagam AD, Mahendran M (2013) Fire safety of buildings based on realistic fire time-temperature curves. In: Manley K, Hampson K, Kajewski S (eds) Proceedings of the 19th International CIB World Building Congress, Brisbane 2013: Construction and Society. Queensland University of Technology, Brisbane, pp 1–13
28.
Zurück zum Zitat Du Y, Li GQ (2012) A new temperature-time curve for fire-resistance analysis of structures. Fire Saf J 54:113–120CrossRef Du Y, Li GQ (2012) A new temperature-time curve for fire-resistance analysis of structures. Fire Saf J 54:113–120CrossRef
29.
Zurück zum Zitat Butcher EG, Chitty TB, Ashton L (1966) The temperature attained by steel in building fires. JFRO, fire research technical paper no. 15. HMSO, London Butcher EG, Chitty TB, Ashton L (1966) The temperature attained by steel in building fires. JFRO, fire research technical paper no. 15. HMSO, London
30.
Zurück zum Zitat Kawagoe K, Sekine T (1963) Estimation of fire temperature-time curve in rooms. Occasional report no. 11. Building Research Institute, Tokyo Kawagoe K, Sekine T (1963) Estimation of fire temperature-time curve in rooms. Occasional report no. 11. Building Research Institute, Tokyo
31.
Zurück zum Zitat Magnusson SE, Thelandersson S (1970) Temperature–time curves of complete process of fire development (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 16; Vol. Bulletin 16). Lund Institute of Technology, Lund Magnusson SE, Thelandersson S (1970) Temperature–time curves of complete process of fire development (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 16; Vol. Bulletin 16). Lund Institute of Technology, Lund
32.
Zurück zum Zitat Pettersson O, Magnusson SE, Thor J (1976) Fire engineering design of steel structures (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 52; Vol. Bulletin 52). Lund Institute of Technology, Lund Pettersson O, Magnusson SE, Thor J (1976) Fire engineering design of steel structures (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 52; Vol. Bulletin 52). Lund Institute of Technology, Lund
34.
Zurück zum Zitat Kawagoe K (1958) Fire behaviour in rooms. Report no. 27 of the Building Research Institute, Ministry of Construction, Tokyo Kawagoe K (1958) Fire behaviour in rooms. Report no. 27 of the Building Research Institute, Ministry of Construction, Tokyo
35.
Zurück zum Zitat Heselden A (1967) Parameters determining the severity of fire. In: Proceedings of the symposium, Fire Research Station, Borehamwood, January 1967, pp 19–28 Heselden A (1967) Parameters determining the severity of fire. In: Proceedings of the symposium, Fire Research Station, Borehamwood, January 1967, pp 19–28
36.
Zurück zum Zitat Heselden A, Thomas P (1972) Fully developed fires in single compartments. CIB report no. 20, Jt Fire Res Organ Fire Res Note 923. Fire Research Station, Borehamwood Heselden A, Thomas P (1972) Fully developed fires in single compartments. CIB report no. 20, Jt Fire Res Organ Fire Res Note 923. Fire Research Station, Borehamwood
37.
Zurück zum Zitat Kirby BR, Wainman DE, Tomlinson LN et al (1994) Natural fires in large scale compartments: A British Steel Technical, Fire Research Station Collaborative Project. British Steel Technical, Rotterdam Kirby BR, Wainman DE, Tomlinson LN et al (1994) Natural fires in large scale compartments: A British Steel Technical, Fire Research Station Collaborative Project. British Steel Technical, Rotterdam
38.
Zurück zum Zitat Law M, O’Brien T (1981) Fire safety of bare external structural steel. Fire and steel construction. Constrado, Croydon Law M, O’Brien T (1981) Fire safety of bare external structural steel. Fire and steel construction. Constrado, Croydon
40.
Zurück zum Zitat Ingberg SH (1928) Tests of the severity of building fires. Q Natl Fire Prot Assoc 22:43–61 Ingberg SH (1928) Tests of the severity of building fires. Q Natl Fire Prot Assoc 22:43–61
41.
Zurück zum Zitat Law M (1971) A relationship between fire grading and building design and contents—fire research note no. 877. Fire Saf Sci 877:1 Law M (1971) A relationship between fire grading and building design and contents—fire research note no. 877. Fire Saf Sci 877:1
42.
Zurück zum Zitat Law M (1973) Prediction of fire resistance. In: Symposium no. 5, fire resistance requirements of buildings, a new approach. Department of the Environment and Fire Offices Committee Joint Fire Research Organisation, Her Majesty’s Stationery Office, London Law M (1973) Prediction of fire resistance. In: Symposium no. 5, fire resistance requirements of buildings, a new approach. Department of the Environment and Fire Offices Committee Joint Fire Research Organisation, Her Majesty’s Stationery Office, London
43.
Zurück zum Zitat Buchanan AH, Abu AK (2017) Structural design for fire safety, 2nd edn. John Wiley & Sons, Chichester Buchanan AH, Abu AK (2017) Structural design for fire safety, 2nd edn. John Wiley & Sons, Chichester
45.
Zurück zum Zitat Law M (1997) A review of formulae for t-equivalent. Fire Saf Sci Fifth Int Symp 5:985–996CrossRef Law M (1997) A review of formulae for t-equivalent. Fire Saf Sci Fifth Int Symp 5:985–996CrossRef
46.
Zurück zum Zitat Kawagoe K, Sekine T (1964) Estimation of fire temperature-time curve in rooms. Japanese Building Research Institute Occasional reports nos 17. Ministry of Construction, Tokyo Kawagoe K, Sekine T (1964) Estimation of fire temperature-time curve in rooms. Japanese Building Research Institute Occasional reports nos 17. Ministry of Construction, Tokyo
47.
Zurück zum Zitat Pettersson O (1975) The connection between a real fire exposure and the heating conditions according to standard fire resistance tests-with special application to steel structures. Division of Structural Mechanics and Concrete, Lund Institute of Technology, Lund Pettersson O (1975) The connection between a real fire exposure and the heating conditions according to standard fire resistance tests-with special application to steel structures. Division of Structural Mechanics and Concrete, Lund Institute of Technology, Lund
48.
Zurück zum Zitat Thomas PH (1986) Design guide: structural fire safety CIB W14 workshop report. Fire Saf J 10:77–137CrossRef Thomas PH (1986) Design guide: structural fire safety CIB W14 workshop report. Fire Saf J 10:77–137CrossRef
49.
Zurück zum Zitat Purkiss JA (2013) Fire safety engineering—design of structures, 3rd edn. CRC Press, Boca RatonCrossRef Purkiss JA (2013) Fire safety engineering—design of structures, 3rd edn. CRC Press, Boca RatonCrossRef
51.
Zurück zum Zitat Xie P, Abu A, Spearpoint M (2017) Comparison of existing time-equivalence methods and the minimum load capacity method. Fire Sci Technol 2015:263–271 Xie P, Abu A, Spearpoint M (2017) Comparison of existing time-equivalence methods and the minimum load capacity method. Fire Sci Technol 2015:263–271
55.
Zurück zum Zitat MacIntyre JD, Abu AK, Moss PJ et al (2022) A review of methods for determining structural fire severity—part I: a historical perspective. Fire Mater 46:153–167CrossRef MacIntyre JD, Abu AK, Moss PJ et al (2022) A review of methods for determining structural fire severity—part I: a historical perspective. Fire Mater 46:153–167CrossRef
56.
Zurück zum Zitat MacIntyre JD, Abu AK, Moss PJ et al (2022) A review of methods for determining structural fire severity—part II: analysis and review. Fire Mater 46:138–152CrossRef MacIntyre JD, Abu AK, Moss PJ et al (2022) A review of methods for determining structural fire severity—part II: analysis and review. Fire Mater 46:138–152CrossRef
59.
Zurück zum Zitat Lovatt A (1998) Comparison studies of zone and CFD fire simulations. Master’s thesis, University of Canterbury, Christchurch Lovatt A (1998) Comparison studies of zone and CFD fire simulations. Master’s thesis, University of Canterbury, Christchurch
60.
Zurück zum Zitat Hume B (1992) Evaluation of fire models: summary report. Central Fire Brigades Advisory Council for England and Wales, London Hume B (1992) Evaluation of fire models: summary report. Central Fire Brigades Advisory Council for England and Wales, London
61.
Zurück zum Zitat Floyd JE (2002) Comparison of CFAST and FDS for fire simulation with the HDR T51 and T52 tests. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, GaithersburgCrossRef Floyd JE (2002) Comparison of CFAST and FDS for fire simulation with the HDR T51 and T52 tests. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, GaithersburgCrossRef
62.
Zurück zum Zitat Jowsey A (2006) Fire imposed heat fluxes for structural analysis. PhD thesis, The University of Edinburgh, Edinburgh Jowsey A (2006) Fire imposed heat fluxes for structural analysis. PhD thesis, The University of Edinburgh, Edinburgh
64.
Zurück zum Zitat CFAST (2000) CFAST 4.0.1: Consolidated Fire and Smoke Transport. National Institute of Standards and Technology (NIST), Gaithersburg CFAST (2000) CFAST 4.0.1: Consolidated Fire and Smoke Transport. National Institute of Standards and Technology (NIST), Gaithersburg
69.
Zurück zum Zitat Tofiło P, Węgrzyński W, Porowski R (2016) Hand calculations, zone models and CFD—areas of disagreement and limits of application in practical fire protection engineering. In: 11th conference on performance-based codes and fire safety design methods, Society of Fire Protection Engineers, Warsaw, 23–25 May 2016 Tofiło P, Węgrzyński W, Porowski R (2016) Hand calculations, zone models and CFD—areas of disagreement and limits of application in practical fire protection engineering. In: 11th conference on performance-based codes and fire safety design methods, Society of Fire Protection Engineers, Warsaw, 23–25 May 2016
71.
Zurück zum Zitat Hurley MJ, Gottuk DT, Hall JR et al (2015) SFPE handbook of fire protection engineering. NFPA, Quincy Hurley MJ, Gottuk DT, Hall JR et al (2015) SFPE handbook of fire protection engineering. NFPA, Quincy
72.
Zurück zum Zitat Law M (1983) A basis for the design of fire protection of building structures. Struct Eng 61A:25–33 Law M (1983) A basis for the design of fire protection of building structures. Struct Eng 61A:25–33
73.
Zurück zum Zitat Cadorin JF, Pintea D, Franssen JM (2001) The design fire tool OZone V2.0—theoretical description and validation on experimental fire tests. Rapport Interne SPEC/2001-01. University of Liege, Liege Cadorin JF, Pintea D, Franssen JM (2001) The design fire tool OZone V2.0—theoretical description and validation on experimental fire tests. Rapport Interne SPEC/2001-01. University of Liege, Liege
74.
Zurück zum Zitat Hadjisophocleous G, Chen Z (2010) A survey of fire loads in elementary schools and high schools. J Fire Prot Eng 20:55–71CrossRef Hadjisophocleous G, Chen Z (2010) A survey of fire loads in elementary schools and high schools. J Fire Prot Eng 20:55–71CrossRef
75.
Zurück zum Zitat Bwalya A, Lougheed G, Kashef A, Saber H (2011) Survey results of combustible contents and floor areas in Canadian multi-family dwellings. Fire Technol 47:1121–1140CrossRef Bwalya A, Lougheed G, Kashef A, Saber H (2011) Survey results of combustible contents and floor areas in Canadian multi-family dwellings. Fire Technol 47:1121–1140CrossRef
76.
Zurück zum Zitat Nayak N, Subramanian L (2019) Fire loads in educational and office buildings. In: Applications of structural fire engineering, Nanyang Technological University, Singapore, 13–14 June 2019, p 80 Nayak N, Subramanian L (2019) Fire loads in educational and office buildings. In: Applications of structural fire engineering, Nanyang Technological University, Singapore, 13–14 June 2019, p 80
77.
Zurück zum Zitat Kumar S, Rao CVSK (1997) Fire loads in office buildings. J Struct Eng 123:365–368CrossRef Kumar S, Rao CVSK (1997) Fire loads in office buildings. J Struct Eng 123:365–368CrossRef
78.
Zurück zum Zitat Thauvoye C, Zhao B, Klein J, Fontana M (2008) Fire load survey and statistical analysis. Fire Saf Sci 9:991–1002CrossRef Thauvoye C, Zhao B, Klein J, Fontana M (2008) Fire load survey and statistical analysis. Fire Saf Sci 9:991–1002CrossRef
79.
Zurück zum Zitat Gadilohar S, Kumar R (2018) Estimation of fire load in a building and procedure to ascertain safety of structural. In: Advances in construction materials and structures (ACMS-2018), IIT Roorkee, Roorkee, 7–8 March 2018 Gadilohar S, Kumar R (2018) Estimation of fire load in a building and procedure to ascertain safety of structural. In: Advances in construction materials and structures (ACMS-2018), IIT Roorkee, Roorkee, 7–8 March 2018
80.
Zurück zum Zitat Kawagoe K, Sekine T (1963) Estimation of fire temperture rise curves in concrete buildings and its application. Bull Fire Prev Soc Japan 13:1–12 Kawagoe K, Sekine T (1963) Estimation of fire temperture rise curves in concrete buildings and its application. Bull Fire Prev Soc Japan 13:1–12
81.
Zurück zum Zitat Law M (1978) Fire safety of external building elements. Eng J Am Inst Steel Constr 15:59–74 Law M (1978) Fire safety of external building elements. Eng J Am Inst Steel Constr 15:59–74
Metadaten
Titel
Simple Estimates of the Most Adverse Fire Growth and Equivalent Fire Severity in Concrete Compartments for Structural Safety
verfasst von
Namita Nayak
Lakshmi Priya Subramanian
Brijesh Balachandran Nair
Publikationsdatum
15.11.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01508-2

Weitere Artikel der Ausgabe 1/2024

Fire Technology 1/2024 Zur Ausgabe