Skip to main content

07.05.2024 | Research Article-Physics

Simulation and Analysis of Molybdenum Tungsten Impact on Capacitive MEMS Pressure Sensor

verfasst von: Nadir Belgroune, Mohammad Zayed Ahmed, Mohamed Sayah, Faiza Bouamra, Meriem Souissi, Abderrahim Guittoum

Erschienen in: Arabian Journal for Science and Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper utilizes COMSOL software to conduct comprehensive simulations and analyses to evaluate the Micro-Electro-Mechanical System (MEMS) capacitive pressure sensor’s performance with and without packaging. The study evaluates the influence of the compatibility of material physical properties, focusing on molybdenum and tungsten. The evaluation parameters include linearity, capacitance sensitivity, and resilience to temperature variations. Molybdenum and tungsten demonstrate promising results, exhibiting high linearity with a nonlinear correlation factor of 0.9999 with packaging and 0.9984 without packaging in the 0–20 kPa pressure range, without the need for mechanical or electrical compensations. The molybdenum-tungsten sensor has exceptional resistance to capacitance variations, with only a 0.08511 pF alteration across a 263–773 K temperature span. To validate these findings, a case study has been incorporated to confirm the impact of matching and a high Young’s modulus in attaining linearity. These discoveries highlight the potential of capacitive MEMS pressure sensors based on molybdenum and tungsten for consistent and stable performance in various operating conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hsu, T.-R.: Mems and Microsystems: Design and Manufacture. McGraw Hill (2002) Hsu, T.-R.: Mems and Microsystems: Design and Manufacture. McGraw Hill (2002)
2.
Zurück zum Zitat Esashi, M.: Revolution of sensors in micro-electromechanical systems. Jpn. J. Appl. Phys. 51(8R), 080001 (2012)CrossRef Esashi, M.: Revolution of sensors in micro-electromechanical systems. Jpn. J. Appl. Phys. 51(8R), 080001 (2012)CrossRef
3.
Zurück zum Zitat Eddy, D.S.; Sparks, D.R.: Application of mems technology in automotive sensors and actuators. Proc. IEEE 86(8), 1747–1755 (1998)CrossRef Eddy, D.S.; Sparks, D.R.: Application of mems technology in automotive sensors and actuators. Proc. IEEE 86(8), 1747–1755 (1998)CrossRef
4.
Zurück zum Zitat Ko, W.H.; Wang, Q.: Touch mode capacitive pressure sensors. Sens. Actuators A 75(3), 242–251 (1999)CrossRef Ko, W.H.; Wang, Q.: Touch mode capacitive pressure sensors. Sens. Actuators A 75(3), 242–251 (1999)CrossRef
5.
Zurück zum Zitat Hema, K.: Mems pressure sensor in automotive industry. Int. J. Sci. Res. 2(5) (2013) Hema, K.: Mems pressure sensor in automotive industry. Int. J. Sci. Res. 2(5) (2013)
6.
Zurück zum Zitat Bhat, K.; Nayak, M.: Mems pressure sensors: an overview of challenges in technology and packaging. Institute of smart structures and systems. J. ISSS 2(1), 39–71 (2013) Bhat, K.; Nayak, M.: Mems pressure sensors: an overview of challenges in technology and packaging. Institute of smart structures and systems. J. ISSS 2(1), 39–71 (2013)
7.
Zurück zum Zitat Zamanzadeh, M.; Jafarsadeghi-Pournaki, I.; Ouakad, H.M.: A resonant pressure mems sensor based on levitation force excitation detection. Nonlinear Dyn. 100, 1105–1123 (2020)CrossRef Zamanzadeh, M.; Jafarsadeghi-Pournaki, I.; Ouakad, H.M.: A resonant pressure mems sensor based on levitation force excitation detection. Nonlinear Dyn. 100, 1105–1123 (2020)CrossRef
8.
Zurück zum Zitat Chen, S.; Qin, J.; Lu, Y.; Xie, B.; Wang, J.; Chen, D.; Chen, J.: An all-silicon resonant pressure microsensor based on eutectic bonding. Micromachines 14(2), 441 (2023)CrossRef Chen, S.; Qin, J.; Lu, Y.; Xie, B.; Wang, J.; Chen, D.; Chen, J.: An all-silicon resonant pressure microsensor based on eutectic bonding. Micromachines 14(2), 441 (2023)CrossRef
9.
Zurück zum Zitat Miyamoto, M.; Aiba, T.; Sue, S.; Kubo, T.: Development of fiber-optic pressure sensor utilizing magneto-optical effect. Electron. Commun. Jpn. 105(3), 12375 (2022)CrossRef Miyamoto, M.; Aiba, T.; Sue, S.; Kubo, T.: Development of fiber-optic pressure sensor utilizing magneto-optical effect. Electron. Commun. Jpn. 105(3), 12375 (2022)CrossRef
10.
Zurück zum Zitat Alonso Romero, A.; Amouzou, K.N.; Sengupta, D.; Zimmermann, C.A.; Richard-Denis, A.; Mac-Thiong, J.-M.; Petit, Y.; Lina, J.-M.; Ung, B.: Optoelectronic pressure sensor based on the bending loss of plastic optical fibers embedded in stretchable polydimethylsiloxane. Sensors 23(6), 3322 (2023)CrossRef Alonso Romero, A.; Amouzou, K.N.; Sengupta, D.; Zimmermann, C.A.; Richard-Denis, A.; Mac-Thiong, J.-M.; Petit, Y.; Lina, J.-M.; Ung, B.: Optoelectronic pressure sensor based on the bending loss of plastic optical fibers embedded in stretchable polydimethylsiloxane. Sensors 23(6), 3322 (2023)CrossRef
11.
Zurück zum Zitat Ge, Y.; Shen, L.; Sun, M.: Temperature compensation for optical fiber graphene micro-pressure sensor using genetic wavelet neural networks. IEEE Sens. J. 21(21), 24195–24201 (2021)CrossRef Ge, Y.; Shen, L.; Sun, M.: Temperature compensation for optical fiber graphene micro-pressure sensor using genetic wavelet neural networks. IEEE Sens. J. 21(21), 24195–24201 (2021)CrossRef
12.
Zurück zum Zitat Ding, X.; Zhong, W.; Jiang, H.; Li, M.; Chen, Y.; Lu, Y.; Ma, J.; Yadav, A.; Yang, L.; Wang, D.: Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl. Mater. Interfaces 12(31), 35638–35646 (2020)CrossRef Ding, X.; Zhong, W.; Jiang, H.; Li, M.; Chen, Y.; Lu, Y.; Ma, J.; Yadav, A.; Yang, L.; Wang, D.: Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl. Mater. Interfaces 12(31), 35638–35646 (2020)CrossRef
13.
Zurück zum Zitat Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L.: Wearable piezoresistive pressure sensors based on 3d graphene. Chem. Eng. J. 406, 126777 (2021)CrossRef Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L.: Wearable piezoresistive pressure sensors based on 3d graphene. Chem. Eng. J. 406, 126777 (2021)CrossRef
14.
Zurück zum Zitat Gidts, M.; Hsu, W.-F.; Payo, M.R.; Kushwaha, S.; Wang, C.; Ceyssens, F.; Reynaerts, D.; Locquet, J.-P.; Kraft, M.: A novel piezoresistive pressure sensor based on cr-doped v 2 o 3 thin film. In: 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 901–904 (2023) Gidts, M.; Hsu, W.-F.; Payo, M.R.; Kushwaha, S.; Wang, C.; Ceyssens, F.; Reynaerts, D.; Locquet, J.-P.; Kraft, M.: A novel piezoresistive pressure sensor based on cr-doped v 2 o 3 thin film. In: 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 901–904 (2023)
15.
Zurück zum Zitat Deng, D.; Wang, S.; Zheng, D.: Eddy current pressure sensor based on planar coil. J. Eng. 2019(23), 8637–8640 (2019) Deng, D.; Wang, S.; Zheng, D.: Eddy current pressure sensor based on planar coil. J. Eng. 2019(23), 8637–8640 (2019)
16.
Zurück zum Zitat Puers, B.; Peeters, E.; Van Den Bossche, A.; Sansen, W.: A capacitive pressure sensor with low impedance output and active suppression of parasitic effects. Sens. Actuators A 21(1–3), 108–114 (1990)CrossRef Puers, B.; Peeters, E.; Van Den Bossche, A.; Sansen, W.: A capacitive pressure sensor with low impedance output and active suppression of parasitic effects. Sens. Actuators A 21(1–3), 108–114 (1990)CrossRef
17.
Zurück zum Zitat Ettouhami, A.; Zahid, N.; Elbelkacemi, M.: A novel capacitive pressure sensor structure with high sensitivity and quasi-linear response. Comptes Rendus Mécanique 332(2), 141–146 (2004)CrossRef Ettouhami, A.; Zahid, N.; Elbelkacemi, M.: A novel capacitive pressure sensor structure with high sensitivity and quasi-linear response. Comptes Rendus Mécanique 332(2), 141–146 (2004)CrossRef
18.
Zurück zum Zitat Zhang, Y.; Howver, R.; Gogoi, B.; Yazdi, N.: A high-sensitive ultra-thin mems capacitive pressure sensor. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 112–115 (2011) Zhang, Y.; Howver, R.; Gogoi, B.; Yazdi, N.: A high-sensitive ultra-thin mems capacitive pressure sensor. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 112–115 (2011)
19.
Zurück zum Zitat Liu, Z.; Pan, Y.; Wu, P.; Du, L.; Zhao, Z.; Fang, Z.: A novel capacitive pressure sensor based on non-coplanar comb electrodes. Sens. Actuators A 297, 111525 (2019)CrossRef Liu, Z.; Pan, Y.; Wu, P.; Du, L.; Zhao, Z.; Fang, Z.: A novel capacitive pressure sensor based on non-coplanar comb electrodes. Sens. Actuators A 297, 111525 (2019)CrossRef
20.
Zurück zum Zitat Meetei, M.S.; Singh, H.S.; Sharma, R.; Singh, N.V.: Theoretical modelling and simulation of circular diaphragm-based comb drive capacitive pressure sensor (cd-cdcps). Int. J. Eng. Trends Technol. 70, 37–45 (2022)CrossRef Meetei, M.S.; Singh, H.S.; Sharma, R.; Singh, N.V.: Theoretical modelling and simulation of circular diaphragm-based comb drive capacitive pressure sensor (cd-cdcps). Int. J. Eng. Trends Technol. 70, 37–45 (2022)CrossRef
21.
Zurück zum Zitat Huang, X.; Zhang, D.: A high sensitivity and high linearity pressure sensor based on a peninsula-structured diaphragm for low-pressure ranges. Sens. Actuators A 216, 176–189 (2014)CrossRef Huang, X.; Zhang, D.: A high sensitivity and high linearity pressure sensor based on a peninsula-structured diaphragm for low-pressure ranges. Sens. Actuators A 216, 176–189 (2014)CrossRef
22.
Zurück zum Zitat Kanekal, D.; Jindal, S.K.: Optimizing piezoresistive mems pressure sensor on a double cross beam silicon diaphragm with statistical curve-fitting and optimization techniques. IEEE Sens. J. 24(1), 169–176 (2023)CrossRef Kanekal, D.; Jindal, S.K.: Optimizing piezoresistive mems pressure sensor on a double cross beam silicon diaphragm with statistical curve-fitting and optimization techniques. IEEE Sens. J. 24(1), 169–176 (2023)CrossRef
23.
Zurück zum Zitat Liu, C.; Du, J.; Rong, L.; Yu, Q.: Modeling and analysis of sic capacitive pressure sensors based on fea postprocessing with infinitesimal approach. IEEE Sens. J. 22(10), 9491–9499 (2022)CrossRef Liu, C.; Du, J.; Rong, L.; Yu, Q.: Modeling and analysis of sic capacitive pressure sensors based on fea postprocessing with infinitesimal approach. IEEE Sens. J. 22(10), 9491–9499 (2022)CrossRef
24.
Zurück zum Zitat Jerman, J.: The fabrication and use of micromachined corrugated silicon diaphragms. Sens. Actuators A 23(1–3), 988–992 (1990)CrossRef Jerman, J.: The fabrication and use of micromachined corrugated silicon diaphragms. Sens. Actuators A 23(1–3), 988–992 (1990)CrossRef
25.
Zurück zum Zitat Rosengren, L.; Söderkvist, J.; Smith, L.: Micromachined sensor structures with linear capacitive response. Sens. Actuators A 31(1–3), 200–205 (1992)CrossRef Rosengren, L.; Söderkvist, J.; Smith, L.: Micromachined sensor structures with linear capacitive response. Sens. Actuators A 31(1–3), 200–205 (1992)CrossRef
26.
Zurück zum Zitat Mishra, G.; Paras, N.; Arora, A.; George, P.J.: Simulation of mems based capacitive pressure sensor using comsol multiphysics. Int. J. Appl. Eng. Res.7(11) (2012) Mishra, G.; Paras, N.; Arora, A.; George, P.J.: Simulation of mems based capacitive pressure sensor using comsol multiphysics. Int. J. Appl. Eng. Res.7(11) (2012)
27.
Zurück zum Zitat Srinivasa Rao, K.; Mohitha Reddy, B.; Bala Teja, V.; Krishnateja, G.; Ashok Kumar, P.; Ramesh, K.: Design and simulation of mems based capacitive pressure sensor for harsh environment. Microsyst. Technol. 26(6), 1875–1880 (2020)CrossRef Srinivasa Rao, K.; Mohitha Reddy, B.; Bala Teja, V.; Krishnateja, G.; Ashok Kumar, P.; Ramesh, K.: Design and simulation of mems based capacitive pressure sensor for harsh environment. Microsyst. Technol. 26(6), 1875–1880 (2020)CrossRef
28.
Zurück zum Zitat Ananthi, S.; Lamba, M.; Chaudhary, H.; Singh, K.: Performance analysis and simulation of mems capacitive pressure sensor. In: Flexible Electronics for Electric Vehicles: Select Proceedings of FlexEV-2021, pp. 151–159. Springer (2021) Ananthi, S.; Lamba, M.; Chaudhary, H.; Singh, K.: Performance analysis and simulation of mems capacitive pressure sensor. In: Flexible Electronics for Electric Vehicles: Select Proceedings of FlexEV-2021, pp. 151–159. Springer (2021)
29.
Zurück zum Zitat Al Amin, R.; Rana, S.M.; Iqbal, M.S.; Rishad, A.S.; Rayhan, M.T.; Hoq, M.; Ali, M.H.: Simulation analysis of capacitive pressure sensor for mems using graphene. In: International Conference on Materials, Electronics Information Engineering, ICMEIE-2015 (2015) Al Amin, R.; Rana, S.M.; Iqbal, M.S.; Rishad, A.S.; Rayhan, M.T.; Hoq, M.; Ali, M.H.: Simulation analysis of capacitive pressure sensor for mems using graphene. In: International Conference on Materials, Electronics Information Engineering, ICMEIE-2015 (2015)
30.
Zurück zum Zitat Anadkat, N.; Rangachar, M.: Simulation based analysis of capacitive pressure sensor with comsol multiphysics. Int. J. Eng. Res. Technol. 4(4), 848–852 (2015) Anadkat, N.; Rangachar, M.: Simulation based analysis of capacitive pressure sensor with comsol multiphysics. Int. J. Eng. Res. Technol. 4(4), 848–852 (2015)
31.
Zurück zum Zitat Mishra, R.B.; Santosh Kumar, S.; Mukhiya, R.: Modeling and fem-based simulations of composite membrane based circular capacitive pressure sensor. In: Advances in VLSI, Communication, and Signal Processing: Select Proceedings of VCAS 2018, pp. 497–506 (2020) Mishra, R.B.; Santosh Kumar, S.; Mukhiya, R.: Modeling and fem-based simulations of composite membrane based circular capacitive pressure sensor. In: Advances in VLSI, Communication, and Signal Processing: Select Proceedings of VCAS 2018, pp. 497–506 (2020)
32.
Zurück zum Zitat Pradeep, A.; Ardra, S.; Unnikrishnan, A.; Athira, S.; Sreenidhi, P.; SD, B.S.: Material optimization for capacitive pressure sensor-a comsol study. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 97–102 (2021) Pradeep, A.; Ardra, S.; Unnikrishnan, A.; Athira, S.; Sreenidhi, P.; SD, B.S.: Material optimization for capacitive pressure sensor-a comsol study. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 97–102 (2021)
33.
Zurück zum Zitat Suman, S.; Punetha, D.; Pandey, S.K.: Improvement in sensing characteristics of silicon microstructure based mems capacitive sensor for automotive applications. SILICON 13, 1475–1483 (2021)CrossRef Suman, S.; Punetha, D.; Pandey, S.K.: Improvement in sensing characteristics of silicon microstructure based mems capacitive sensor for automotive applications. SILICON 13, 1475–1483 (2021)CrossRef
34.
Zurück zum Zitat Ghanam, M.; Goldschmidtboeing, F.; Bilger, T.; Bucherer, A.; Woias, P.: Mems shielded capacitive pressure and force sensors with excellent thermal stability and high operating temperature. Sensors 23(9), 4248 (2023)CrossRef Ghanam, M.; Goldschmidtboeing, F.; Bilger, T.; Bucherer, A.; Woias, P.: Mems shielded capacitive pressure and force sensors with excellent thermal stability and high operating temperature. Sensors 23(9), 4248 (2023)CrossRef
35.
Zurück zum Zitat Chen, L.; Mehregany, M.: A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications. In: TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, pp. 2597–2600 (2007) Chen, L.; Mehregany, M.: A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications. In: TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, pp. 2597–2600 (2007)
36.
Zurück zum Zitat Young, D.J.; Du, J.; Zorman, C.A.; Ko, W.H.: High-temperature single-crystal 3c-sic capacitive pressure sensor. IEEE Sens. J. 4(4), 464–470 (2004)CrossRef Young, D.J.; Du, J.; Zorman, C.A.; Ko, W.H.: High-temperature single-crystal 3c-sic capacitive pressure sensor. IEEE Sens. J. 4(4), 464–470 (2004)CrossRef
37.
Zurück zum Zitat Marsi, N.; Majlis, B.Y.; Mohd-Yasin, F.; Hamzah, A.A.: The fabrication of back etching 3c-sic-on-si diaphragm employing koh+ ipa in mems capacitive pressure sensor. Microsyst. Technol. 21, 1651–1661 (2015)CrossRef Marsi, N.; Majlis, B.Y.; Mohd-Yasin, F.; Hamzah, A.A.: The fabrication of back etching 3c-sic-on-si diaphragm employing koh+ ipa in mems capacitive pressure sensor. Microsyst. Technol. 21, 1651–1661 (2015)CrossRef
38.
Zurück zum Zitat Marsi, N.; Majlis, B.Y.; Hamzah, A.A.; Mohd-Yasin, F.: High reliability of mems packaged capacitive pressure sensor employing 3c-sic for high temperature. Energy Procedia 68, 471–479 (2015)CrossRef Marsi, N.; Majlis, B.Y.; Hamzah, A.A.; Mohd-Yasin, F.: High reliability of mems packaged capacitive pressure sensor employing 3c-sic for high temperature. Energy Procedia 68, 471–479 (2015)CrossRef
39.
Zurück zum Zitat Han, K.; Toplosky, V.; Min, N.; Lu, J.; Xin, Y.; Walsh, R.: High modulus reinforcement alloys. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018) Han, K.; Toplosky, V.; Min, N.; Lu, J.; Xin, Y.; Walsh, R.: High modulus reinforcement alloys. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018)
40.
Zurück zum Zitat Fernandes, C.; Taurino, I.: Biodegradable molybdenum (mo) and tungsten (w) devices: one step closer towards fully-transient biomedical implants. Sensors 22(8), 3062 (2022)CrossRef Fernandes, C.; Taurino, I.: Biodegradable molybdenum (mo) and tungsten (w) devices: one step closer towards fully-transient biomedical implants. Sensors 22(8), 3062 (2022)CrossRef
41.
Zurück zum Zitat Cho, S.H.; Lee, S.W.; Yu, S.; Kim, H.; Chang, S.; Kang, D.; Hwang, I.; Kang, H.S.; Jeong, B.; Kim, E.H.; et al.: Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl. Mater. Interfaces 9(11), 10128–10135 (2017)CrossRef Cho, S.H.; Lee, S.W.; Yu, S.; Kim, H.; Chang, S.; Kang, D.; Hwang, I.; Kang, H.S.; Jeong, B.; Kim, E.H.; et al.: Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl. Mater. Interfaces 9(11), 10128–10135 (2017)CrossRef
42.
Zurück zum Zitat Zhu, J.; Hao, G.: Modelling of a general lumped-compliance beam for compliant mechanisms. Int. J. Mech. Sci. 263, 108779 (2024)CrossRef Zhu, J.; Hao, G.: Modelling of a general lumped-compliance beam for compliant mechanisms. Int. J. Mech. Sci. 263, 108779 (2024)CrossRef
43.
Zurück zum Zitat Zhou, Q.; Liu, X.; Luo, S.; Jiang, X.; Yang, D.; Yuan, W.: Design and numerical simulation of capacitive pressure sensor based on silicon carbide. IEEE Sens. J. 23(24), 30535–30545 (2023)CrossRef Zhou, Q.; Liu, X.; Luo, S.; Jiang, X.; Yang, D.; Yuan, W.: Design and numerical simulation of capacitive pressure sensor based on silicon carbide. IEEE Sens. J. 23(24), 30535–30545 (2023)CrossRef
44.
Zurück zum Zitat Guide, M.L.U.: Comsol Multiphysics®. COMSOL AB, Stockholm (2021) Guide, M.L.U.: Comsol Multiphysics®. COMSOL AB, Stockholm (2021)
45.
Zurück zum Zitat Amith, V.; Sushil, Vyasaraj, T.; Gururaj, H.; Vikram, K.; Suraj, K.; Vandana, K.; Divya, S.K.: Modelling and simulation of capacitive pressure sensor using comsol multiphysics 5.0. . Int. J. Innov. Res. Sci. Eng. Technol. 5(5), 8407–8415 (2016) Amith, V.; Sushil, Vyasaraj, T.; Gururaj, H.; Vikram, K.; Suraj, K.; Vandana, K.; Divya, S.K.: Modelling and simulation of capacitive pressure sensor using comsol multiphysics 5.0. . Int. J. Innov. Res. Sci. Eng. Technol. 5(5), 8407–8415 (2016)
46.
Zurück zum Zitat Belgroune, N.; Ahmed, M.Z.: Fem simulation and performance evaluation of mems pressure sensor based on capacitive effect using molybdenum and tungsten. In: 1st International Conference on Computational and Applied Physics, p. 25 (2022) Belgroune, N.; Ahmed, M.Z.: Fem simulation and performance evaluation of mems pressure sensor based on capacitive effect using molybdenum and tungsten. In: 1st International Conference on Computational and Applied Physics, p. 25 (2022)
47.
Zurück zum Zitat Shahiri, M.; Azizollah Ganji, B.: Analytical analysis of capacitive pressure sensor with clamped diaphragm (research note). Int. J. Eng. 26(3), 297–302 (2013) Shahiri, M.; Azizollah Ganji, B.: Analytical analysis of capacitive pressure sensor with clamped diaphragm (research note). Int. J. Eng. 26(3), 297–302 (2013)
48.
Zurück zum Zitat Zou, K.H.; Tuncali, K.; Silverman, S.G.: Correlation and simple linear regression. Radiology 227(3), 617–628 (2003)CrossRef Zou, K.H.; Tuncali, K.; Silverman, S.G.: Correlation and simple linear regression. Radiology 227(3), 617–628 (2003)CrossRef
49.
Zurück zum Zitat Wu, J.; Yao, Y.; Zhang, Y.; Shao, T.; Wu, H.; Liu, S.; Li, Z.; Wu, L.: Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range. Nanoscale 12(41), 21198–21206 (2020)CrossRef Wu, J.; Yao, Y.; Zhang, Y.; Shao, T.; Wu, H.; Liu, S.; Li, Z.; Wu, L.: Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range. Nanoscale 12(41), 21198–21206 (2020)CrossRef
50.
Zurück zum Zitat Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B.: Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 17(43), 2103312 (2021)CrossRef Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B.: Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 17(43), 2103312 (2021)CrossRef
51.
Zurück zum Zitat Lv, C.; Tian, C.; Jiang, J.; Dang, Y.; Liu, Y.; Duan, X.; Li, Q.; Chen, X.; Xie, M.: Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10(14), 2206807 (2023)CrossRef Lv, C.; Tian, C.; Jiang, J.; Dang, Y.; Liu, Y.; Duan, X.; Li, Q.; Chen, X.; Xie, M.: Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10(14), 2206807 (2023)CrossRef
52.
Zurück zum Zitat Shi, Y.; Lü, X.; Zhao, J.; Wang, W.; Meng, X.; Wang, P.; Li, F.: Flexible capacitive pressure sensor based on microstructured composite dielectric layer for broad linear range pressure sensing applications. Micromachines 13(2), 223 (2022)CrossRef Shi, Y.; Lü, X.; Zhao, J.; Wang, W.; Meng, X.; Wang, P.; Li, F.: Flexible capacitive pressure sensor based on microstructured composite dielectric layer for broad linear range pressure sensing applications. Micromachines 13(2), 223 (2022)CrossRef
53.
Zurück zum Zitat Tagawa, Y.; Lee, S.; Someya, T.; Yokota, T.: A capacitive pressure sensor with linearity and high sensitivity over a wide pressure range using thermoplastic microspheres. Adv. Electron. Mater. 9(9), 2201304 (2023)CrossRef Tagawa, Y.; Lee, S.; Someya, T.; Yokota, T.: A capacitive pressure sensor with linearity and high sensitivity over a wide pressure range using thermoplastic microspheres. Adv. Electron. Mater. 9(9), 2201304 (2023)CrossRef
54.
Zurück zum Zitat Sayah, M.; Guebli, D.; Al Masry, Z.; Zerhouni, N.: Robustness testing framework for rul prediction deep lstm networks. ISA Trans. 113, 28–38 (2021)CrossRef Sayah, M.; Guebli, D.; Al Masry, Z.; Zerhouni, N.: Robustness testing framework for rul prediction deep lstm networks. ISA Trans. 113, 28–38 (2021)CrossRef
55.
Zurück zum Zitat Bouamra, F.; Sayah, M.; Terissa, S.L.; Zerhouni, N.: A smart gru-based estimator for sno2 thin films characteristics. In: ICCAP’2023: 2nd International Conference on Computational and Applied Physics, University Blida1, Algeria (2023) Bouamra, F.; Sayah, M.; Terissa, S.L.; Zerhouni, N.: A smart gru-based estimator for sno2 thin films characteristics. In: ICCAP’2023: 2nd International Conference on Computational and Applied Physics, University Blida1, Algeria (2023)
56.
Zurück zum Zitat Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D 404, 132306 (2020) Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D 404, 132306 (2020)
Metadaten
Titel
Simulation and Analysis of Molybdenum Tungsten Impact on Capacitive MEMS Pressure Sensor
verfasst von
Nadir Belgroune
Mohammad Zayed Ahmed
Mohamed Sayah
Faiza Bouamra
Meriem Souissi
Abderrahim Guittoum
Publikationsdatum
07.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-024-08938-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.