Skip to main content
Erschienen in: Experimental Mechanics 9/2023

03.10.2023 | Research paper

Simultaneous Identification of Vertical and Horizontal Complex Stiffness of Preloaded Rubber Mounts: Transformation of Frequency Response Functions and Decoupling of Degrees of Freedom

verfasst von: D. Long, Q. Chen, D. Xiang, M. Zhong, H. Zhang

Erschienen in: Experimental Mechanics | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

Rubber mounts are widely used to isolate vibrating components. Their complex stiffness characteristics, including dynamic stiffness and loss factors, are highly concerning in terms of vibration analysis and optimization. Rubber mounts show non-linear behavior with preload, leading to difficulty to predict their complex stiffness. Dynamic testing is generally necessary.

Objective

An approach to identify the complex stiffness of preloaded rubber mounts in both vertical and horizontal directions simultaneously is developed.

Methods

Tested Frequency Response Functions (FRF) of a mass suspended by rubber mounts are transformed to an FRF matrix of the mass center to decouple the Z Degrees of Freedom (DOF) and RZ DOF from other DOFs, which allows complex stiffness to be identified from the two decoupled DOFs. A software tool to implement automatically the FRF transformation and parameter identification is developed. An EPDM rubber mount is tested using the device and its complex stiffness is identified using the software to validate the proposed approach.

Results

The driving-point FRFs of the mass center calculated from the identified complex stiffness are very close to the corresponding FRFs determined from the test data. The comparison between the Finite-Element Analysis (FEA) results of the surficial FRFs and the test results shows good consistency as well. Therefore, the proposed approach and its supporting algorithm are validated.

Conclusion

the proposed approach allows for swift identification of high-accuracy complex stiffness of preloaded rubber mounts in both vertical and horizontal directions simultaneously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee HJ, Kim KJ (2004) Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner. J Sound Vib 272(3–5):607–625CrossRef Lee HJ, Kim KJ (2004) Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner. J Sound Vib 272(3–5):607–625CrossRef
2.
Zurück zum Zitat Kim ST, Jeon GJ, Jeong WB (2012) Force identification and sound prediction of a reciprocating compressor for a refrigerator. Trans Korean Soc Noise Vib Eng 22(5):437–443CrossRef Kim ST, Jeon GJ, Jeong WB (2012) Force identification and sound prediction of a reciprocating compressor for a refrigerator. Trans Korean Soc Noise Vib Eng 22(5):437–443CrossRef
3.
Zurück zum Zitat Loh SK, Faris WF, Hamdi M et al (2011) Vibrational characteristics of piping system in air conditioning outdoor unit. Sci China - Technological Sci 54(5):1154–1168CrossRefMATH Loh SK, Faris WF, Hamdi M et al (2011) Vibrational characteristics of piping system in air conditioning outdoor unit. Sci China - Technological Sci 54(5):1154–1168CrossRefMATH
4.
Zurück zum Zitat Nho (2008) Sik. Non-linear large deformation analysis of elastic rubber mount. J Soc Naval Architects Korea 45(2):186–191CrossRef Nho (2008) Sik. Non-linear large deformation analysis of elastic rubber mount. J Soc Naval Architects Korea 45(2):186–191CrossRef
5.
Zurück zum Zitat Coja M, Kari L (2021) Using waveguides to model the dynamic stiffness of pre-compressed natural rubber vibration isolators. Polymers 13(11):1–27CrossRef Coja M, Kari L (2021) Using waveguides to model the dynamic stiffness of pre-compressed natural rubber vibration isolators. Polymers 13(11):1–27CrossRef
6.
Zurück zum Zitat ISO (2011) ISO 4664-1 Rubber, vulcanized or thermoplastic - Determination of dynamic properties - Part 1: General guidance ISO (2011) ISO 4664-1 Rubber, vulcanized or thermoplastic - Determination of dynamic properties - Part 1: General guidance
7.
Zurück zum Zitat Lapcik L, Augustin P, Pistek A et al (2001) Measurement of the dynamic stiffness of recycled rubber based railway track mats according to the DB-TL 918.071 standard. Appl Acoust 62(9):1123–1128CrossRef Lapcik L, Augustin P, Pistek A et al (2001) Measurement of the dynamic stiffness of recycled rubber based railway track mats according to the DB-TL 918.071 standard. Appl Acoust 62(9):1123–1128CrossRef
8.
Zurück zum Zitat Kanzenbach L, Oelsch E, Lehmann T et al (2019) Dynamic testing of a specimen setup for combined high precision uniaxial tension- compression tests of rubber. Materials Today - Proceedings 12(2):383–387CrossRef Kanzenbach L, Oelsch E, Lehmann T et al (2019) Dynamic testing of a specimen setup for combined high precision uniaxial tension- compression tests of rubber. Materials Today - Proceedings 12(2):383–387CrossRef
9.
Zurück zum Zitat Ren LZ, Liu L, Ren ZC (2012) Centrifuge rubber suspension spring characteristics of the experimental research. Appl Mech Mater 157–158:563–566CrossRef Ren LZ, Liu L, Ren ZC (2012) Centrifuge rubber suspension spring characteristics of the experimental research. Appl Mech Mater 157–158:563–566CrossRef
10.
Zurück zum Zitat Gil-Negrete N, Vinolas J, Kari L (2006) A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. J Sound Vib 296(4–5):757–776CrossRef Gil-Negrete N, Vinolas J, Kari L (2006) A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. J Sound Vib 296(4–5):757–776CrossRef
11.
Zurück zum Zitat Castellucci MA, Hughes AT, Mars WV (2008) Comparison of test specimens for characterizing the dynamic properties of rubber. Exp Mech 48(1):1–8CrossRef Castellucci MA, Hughes AT, Mars WV (2008) Comparison of test specimens for characterizing the dynamic properties of rubber. Exp Mech 48(1):1–8CrossRef
12.
Zurück zum Zitat Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRef Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRef
13.
Zurück zum Zitat Beda T (2007) Modeling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J Polym Sci Part B-Polymer Phys 45(13):1713–1732CrossRef Beda T (2007) Modeling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J Polym Sci Part B-Polymer Phys 45(13):1713–1732CrossRef
14.
Zurück zum Zitat Goo JH, Ahn T, Bae DS et al (2009) Estimation of dynamic stiffness of a rubber bush. Trans KSME A 33(11):1244–1248CrossRef Goo JH, Ahn T, Bae DS et al (2009) Estimation of dynamic stiffness of a rubber bush. Trans KSME A 33(11):1244–1248CrossRef
15.
Zurück zum Zitat Lee YH, Kim JS, Kim KJ et al (2013) Prediction of dynamic stiffness on rubber components considering preloads. Materialwiss Werkstofftech 44(5):372–379CrossRef Lee YH, Kim JS, Kim KJ et al (2013) Prediction of dynamic stiffness on rubber components considering preloads. Materialwiss Werkstofftech 44(5):372–379CrossRef
16.
Zurück zum Zitat Ramorino G, Vetturi D, Cambiaghi D et al (2003) Developments in dynamic testing of rubber compounds: Assessment of non-linear effects. Polym Test 22(6):681–687CrossRef Ramorino G, Vetturi D, Cambiaghi D et al (2003) Developments in dynamic testing of rubber compounds: Assessment of non-linear effects. Polym Test 22(6):681–687CrossRef
17.
Zurück zum Zitat Ooi LE, Ripin ZM (2011) Dynamic stiffness and loss factor measurement of engine rubber mount by impact test. Mater Des 32(4):1880–1887CrossRef Ooi LE, Ripin ZM (2011) Dynamic stiffness and loss factor measurement of engine rubber mount by impact test. Mater Des 32(4):1880–1887CrossRef
18.
Zurück zum Zitat Lin TR, Farag NH, Pan J (2005) Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Appl Acoust 66(7):829–844CrossRef Lin TR, Farag NH, Pan J (2005) Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Appl Acoust 66(7):829–844CrossRef
19.
Zurück zum Zitat Park U, Lee JH, Kim K (2021) The optimal design of the mounting rubber system for reducing vibration of the air compressor focusing on complex dynamic stiffness. J Mech Sci Technol 35(2):487–493CrossRef Park U, Lee JH, Kim K (2021) The optimal design of the mounting rubber system for reducing vibration of the air compressor focusing on complex dynamic stiffness. J Mech Sci Technol 35(2):487–493CrossRef
20.
Zurück zum Zitat Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195(1):103–115CrossRefMATH Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195(1):103–115CrossRefMATH
22.
Zurück zum Zitat Xia EL, Cao ZL, Zhu XW et al (2021) A modified dynamic stiffness calculation method of rubber isolator considering frequency, amplitude and preload dependency and its application in transfer path analysis of vehicle bodies. Appl Acoust 175:1–10CrossRef Xia EL, Cao ZL, Zhu XW et al (2021) A modified dynamic stiffness calculation method of rubber isolator considering frequency, amplitude and preload dependency and its application in transfer path analysis of vehicle bodies. Appl Acoust 175:1–10CrossRef
23.
Zurück zum Zitat Long DF, Zhong M, Si WZ et al (2022) Six-degrees-of-freedom dynamic load identification of compressors for refrigeration system based on rigid body dynamics. J Vib Control 0(0):1–12 Long DF, Zhong M, Si WZ et al (2022) Six-degrees-of-freedom dynamic load identification of compressors for refrigeration system based on rigid body dynamics. J Vib Control 0(0):1–12
24.
Zurück zum Zitat Ooi LE, Ripin ZM (2014) Impact technique for measuring global dynamic stiffness of engine mounts. Int J Autom Technol 15(6):1015–1026CrossRef Ooi LE, Ripin ZM (2014) Impact technique for measuring global dynamic stiffness of engine mounts. Int J Autom Technol 15(6):1015–1026CrossRef
25.
Zurück zum Zitat Tomatsu T, Okada T, Ikeno T et al (2005) A method to identify the stiffness of engine mounts using experimental modal analysis. Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 1: 265–272 Tomatsu T, Okada T, Ikeno T et al (2005) A method to identify the stiffness of engine mounts using experimental modal analysis. Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 1: 265–272
26.
Zurück zum Zitat Cao SQ, Zhang WD, Xiao LX (2014) Modal analysis of vibrating structures. Tianjin University Press, Edition, p 2 Cao SQ, Zhang WD, Xiao LX (2014) Modal analysis of vibrating structures. Tianjin University Press, Edition, p 2
27.
Zurück zum Zitat Li JF, Zhang X (2021) Theoretical Mechanics. Tsinghua University Press, Edition, p 3 Li JF, Zhang X (2021) Theoretical Mechanics. Tsinghua University Press, Edition, p 3
28.
Zurück zum Zitat Lee HW, Ryu SM, Jeong WB et al (2010) Force identification of a rotary compressor and prediction of vibration on a pipe. Trans Korean Soc Noise Vib Eng 20(10):953–959CrossRef Lee HW, Ryu SM, Jeong WB et al (2010) Force identification of a rotary compressor and prediction of vibration on a pipe. Trans Korean Soc Noise Vib Eng 20(10):953–959CrossRef
Metadaten
Titel
Simultaneous Identification of Vertical and Horizontal Complex Stiffness of Preloaded Rubber Mounts: Transformation of Frequency Response Functions and Decoupling of Degrees of Freedom
verfasst von
D. Long
Q. Chen
D. Xiang
M. Zhong
H. Zhang
Publikationsdatum
03.10.2023
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 9/2023
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-023-01002-4

Weitere Artikel der Ausgabe 9/2023

Experimental Mechanics 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.