Skip to main content
Erschienen in: Wireless Personal Communications 1/2017

09.05.2017

Simultaneous Wireless Information and Power Transfer with Finite-Alphabet Inputs

verfasst von: Feng Ke, Xiaoyu Huang, Yuan Liu, Suili Feng

Erschienen in: Wireless Personal Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simultaneous wireless information and power transfer (SWIPT) is a promising solution to carry energy as well as information at the same time for wireless networks. In this paper, we consider a precoding matrix design for multiple-input multiple-output (MIMO) SWIPT systems with finite-alphabet inputs. The problem can be formulated as maximizing the mutual information given the energy level and the power constraint for achieving a so-called rate-energy region. The formulated problem is non-concave, which can be reduced to a convex power allocation problem by the proposed gradient-descend design of the precoding matrix. Several rate-energy regions can be achieved by trading off between the information rate and the harvested energy with different schemes. Simulation results indicate that the proposed scheme with finite-alphabet inputs provides significant performance gain over existing schemes with Gaussian inputs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRef Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRef
2.
Zurück zum Zitat Liu, Y., & Wang, X. (2016). Information and energy cooperation in OFDM relaying: Protocols and optimization. IEEE Transactions on Vehicular Technology, 65(7), 5088–5098.CrossRef Liu, Y., & Wang, X. (2016). Information and energy cooperation in OFDM relaying: Protocols and optimization. IEEE Transactions on Vehicular Technology, 65(7), 5088–5098.CrossRef
3.
Zurück zum Zitat Zhang, M., Liu, Y., & Zhang, R. (2016). Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Transactions on Wireless Communications, 15(4), 3085–3096.CrossRef Zhang, M., Liu, Y., & Zhang, R. (2016). Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Transactions on Wireless Communications, 15(4), 3085–3096.CrossRef
4.
Zurück zum Zitat Zhang, M., & Liu, Y. (2016). Energy harvesting for physical-layer security in OFDMA networks. IEEE Transactions on Information Forensics and Security, 11(1), 154–162.CrossRef Zhang, M., & Liu, Y. (2016). Energy harvesting for physical-layer security in OFDMA networks. IEEE Transactions on Information Forensics and Security, 11(1), 154–162.CrossRef
5.
Zurück zum Zitat Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.CrossRef Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.CrossRef
6.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, H. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, H. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef
7.
Zurück zum Zitat Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.CrossRef Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.CrossRef
8.
Zurück zum Zitat Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef
9.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
10.
Zurück zum Zitat Khandaker, M. R. A., & Wong, K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.CrossRef Khandaker, M. R. A., & Wong, K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.CrossRef
11.
Zurück zum Zitat Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., & Huang, K. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRef Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., & Huang, K. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRef
12.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef
13.
Zurück zum Zitat Sun, Q., Zhu, G., Shen, C., Li, X., & Zhong, Z. (2014). Joint beamforming design and time allocation for wireless powered communication networks. IEEE Communications Letters, 18(10), 1783–1786.CrossRef Sun, Q., Zhu, G., Shen, C., Li, X., & Zhong, Z. (2014). Joint beamforming design and time allocation for wireless powered communication networks. IEEE Communications Letters, 18(10), 1783–1786.CrossRef
14.
Zurück zum Zitat Lee, H., Lee, K. J., Kong, H. B., & Lee, I. (2016). Sum-rate maximization for multiuser MIMO wireless powered communication networks. IEEE Transactions on Vehicular Technology, 65(11), 9420–9424.CrossRef Lee, H., Lee, K. J., Kong, H. B., & Lee, I. (2016). Sum-rate maximization for multiuser MIMO wireless powered communication networks. IEEE Transactions on Vehicular Technology, 65(11), 9420–9424.CrossRef
15.
Zurück zum Zitat Lozano, A., Tulino, A., & Verd, S. (2006). Optimum power allocation for parallel Gaussian channels with arbitrary input distributions. IEEE Transactions on Information Theory, 52(7), 3033–3051.MathSciNetCrossRefMATH Lozano, A., Tulino, A., & Verd, S. (2006). Optimum power allocation for parallel Gaussian channels with arbitrary input distributions. IEEE Transactions on Information Theory, 52(7), 3033–3051.MathSciNetCrossRefMATH
16.
Zurück zum Zitat Xiao, C., & Zheng, Y. R. (2008). On the mutual information and power allocation for vector Gaussian channels with finite discrete inputs. In Proceeding of the GLOBECOM, 2008 (pp. 1–5), Nov 2008. Xiao, C., & Zheng, Y. R. (2008). On the mutual information and power allocation for vector Gaussian channels with finite discrete inputs. In Proceeding of the GLOBECOM, 2008 (pp. 1–5), Nov 2008.
17.
Zurück zum Zitat Xiao, C., Zheng, Y. R., & Ding, Z. (2011). Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels. IEEE Transactions on Signal Processing, 59(7), 3301–3314.MathSciNetCrossRef Xiao, C., Zheng, Y. R., & Ding, Z. (2011). Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels. IEEE Transactions on Signal Processing, 59(7), 3301–3314.MathSciNetCrossRef
18.
Zurück zum Zitat Zeng, W., Xiao, C., & Lu, J. (2012). A low-complexity design of linear precoding for MIMO channels with finite-alphabet inputs. IEEE Wireless Communications Letters, 1(1), 38–41.CrossRef Zeng, W., Xiao, C., & Lu, J. (2012). A low-complexity design of linear precoding for MIMO channels with finite-alphabet inputs. IEEE Wireless Communications Letters, 1(1), 38–41.CrossRef
19.
Zurück zum Zitat Zeng, W., Zheng, Y. R., & Schober, R. (2015). Online resource allocation for energy harvesting downlink multiuser systems: Precoding with modulation, coding rate, and subchannel selection. IEEE Transactions on Wireless Communications, 14(10), 5780–5794.CrossRef Zeng, W., Zheng, Y. R., & Schober, R. (2015). Online resource allocation for energy harvesting downlink multiuser systems: Precoding with modulation, coding rate, and subchannel selection. IEEE Transactions on Wireless Communications, 14(10), 5780–5794.CrossRef
20.
Zurück zum Zitat Zeng, W., Xiao, C., Wang, M., & Lu, J. (2012). Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI. IEEE Transactions on Signal Processing, 60(6), 3134–3148.MathSciNetCrossRef Zeng, W., Xiao, C., Wang, M., & Lu, J. (2012). Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI. IEEE Transactions on Signal Processing, 60(6), 3134–3148.MathSciNetCrossRef
21.
Zurück zum Zitat Wu, Y., Wen, C. K., Xiao, C., Gao, X., & Schober, R. (2015). Linear precoding for the MIMO multiple access channel with finite alphabet inputs and statistical CSI. IEEE Transactions on Wireless Communications, 14(2), 983–997.CrossRef Wu, Y., Wen, C. K., Xiao, C., Gao, X., & Schober, R. (2015). Linear precoding for the MIMO multiple access channel with finite alphabet inputs and statistical CSI. IEEE Transactions on Wireless Communications, 14(2), 983–997.CrossRef
22.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH
23.
Zurück zum Zitat Zeng, W., Zheng, Y. R., & Xiao, C. (2016). Online precoding for energy harvesting transmitter with finite-alphabet inputs and statistical CSI. IEEE Transactions on Vehicular Technology, 65(7), 5287–5302.CrossRef Zeng, W., Zheng, Y. R., & Xiao, C. (2016). Online precoding for energy harvesting transmitter with finite-alphabet inputs and statistical CSI. IEEE Transactions on Vehicular Technology, 65(7), 5287–5302.CrossRef
24.
Zurück zum Zitat Zheng, Y. R., Wang, M., Zeng, W., & Xiao, C. (2013). Practical linear precoder design for finite alphabet multiple-input multiple-output orthogonal frequency division multiplexing with experiment validation. IET Communications, 7(9), 836–847.CrossRef Zheng, Y. R., Wang, M., Zeng, W., & Xiao, C. (2013). Practical linear precoder design for finite alphabet multiple-input multiple-output orthogonal frequency division multiplexing with experiment validation. IET Communications, 7(9), 836–847.CrossRef
25.
Zurück zum Zitat Magnus, J., & Neudecker, H. (2007). Matrix differential calculus with applications in statistics and econometrics (3rd ed.). New York: Wiley.MATH Magnus, J., & Neudecker, H. (2007). Matrix differential calculus with applications in statistics and econometrics (3rd ed.). New York: Wiley.MATH
26.
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (1990). Elements of information theory. New York: Wiley.MATH Cover, T. M., & Thomas, J. A. (1990). Elements of information theory. New York: Wiley.MATH
27.
Zurück zum Zitat Xin, Y., Wang, Z., & Giannakis, G. B. (2003). Space-time diversity systems based on linear constellation precoding. IEEE Transactions on Wireless Communicaitons, 2(2), 294–309.CrossRef Xin, Y., Wang, Z., & Giannakis, G. B. (2003). Space-time diversity systems based on linear constellation precoding. IEEE Transactions on Wireless Communicaitons, 2(2), 294–309.CrossRef
Metadaten
Titel
Simultaneous Wireless Information and Power Transfer with Finite-Alphabet Inputs
verfasst von
Feng Ke
Xiaoyu Huang
Yuan Liu
Suili Feng
Publikationsdatum
09.05.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4194-3

Weitere Artikel der Ausgabe 1/2017

Wireless Personal Communications 1/2017 Zur Ausgabe

Neuer Inhalt