Skip to main content
Erschienen in: Innovative Infrastructure Solutions 1/2024

01.01.2024 | Technical Paper

Slump monitoring and electrical resistivity comparison in concrete modified with steel slag as fine aggregate replacement

verfasst von: Nzar Piro, Ahmed Salih Mohammed, Samir M. Hamad

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to investigate the effect of waste steel slag (SS) as partially replaced with cement and fine aggregate on concrete for different mixes in terms of compressive strength (CS) and electrical resistivity (ER). SS is a molten mixture of silicates and oxides that solidifies upon cooling, a byproduct of the steel-making process. Before conducting the design experiments, the optimal percentage of SS in both powder and fine aggregate forms was established through seven different mixes. This aimed to examine the influence of various SS particle sizes on CS. Based on the results achieved, the optimum percentage and effective size of SS were selected to modify and investigate the effect of SS on three different mixes of conventional concrete (M25, M35, and M47) in terms of CS, ER, and concrete slump. The resistivity of each mixture was assessed by implementing four-probe (4P) and two-probe (2P) techniques, ranging from the initial stages of curing up until the 28 days of the curing. The exclusion of the wire probe in the 4P technique is evidenced by the findings, which indicate that 4P is superior to 2P in terms of ER detection accuracy. Computing the correlation between the 2P and 4P approaches is crucial to obtain the correct resistivity value. The concrete slump value and initial resistivity (ρo) correlation model was developed. The results demonstrated that the concrete slump could be determined based on concrete with high accuracy, with the coefficient of determination (R2) 0.8 and 0.84 for 2P and 4P, respectively. Moreover, the findings also indicated that the CS of M25 concrete, when enhanced with SS, was 2.27% lower than that of M25 concrete without SS after 28 days of curing. In contrast, the CS of M35 concrete with SS modification was 6.74% higher than that of the unmodified M35 concrete. Similarly, for M47 concrete modified with SS, its CS was 12.8% greater than the original M47 concrete.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Demircilioglu E, Teomete E, Ozbulut OE (2020) Strain sensitivity of steel-fiber-reinforced industrial smart concrete. J Intell Mater Syst Struct 31(1):127–136CrossRef Demircilioglu E, Teomete E, Ozbulut OE (2020) Strain sensitivity of steel-fiber-reinforced industrial smart concrete. J Intell Mater Syst Struct 31(1):127–136CrossRef
2.
Zurück zum Zitat Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: a review. Measurement 59:110–128CrossRef Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: a review. Measurement 59:110–128CrossRef
3.
Zurück zum Zitat Tian Z et al (2019) A state-of-the-art on self-sensing concrete: materials, fabrication and properties. Compos B Eng 177:107437CrossRef Tian Z et al (2019) A state-of-the-art on self-sensing concrete: materials, fabrication and properties. Compos B Eng 177:107437CrossRef
4.
Zurück zum Zitat Choi E et al (2019) Self-sensing properties of concrete with electric arc furnace slag and steel fiber. J Korean Soc Hazard Mitig 19(1):265–274CrossRef Choi E et al (2019) Self-sensing properties of concrete with electric arc furnace slag and steel fiber. J Korean Soc Hazard Mitig 19(1):265–274CrossRef
5.
Zurück zum Zitat Wang Y et al (2018) Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors. Constr Build Mater 186:367–378CrossRef Wang Y et al (2018) Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors. Constr Build Mater 186:367–378CrossRef
6.
Zurück zum Zitat Chung D (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef Chung D (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef
7.
Zurück zum Zitat Chung D (2004) Electrically conductive cement-based materials. Adv Cem Res 16(4):167–176CrossRef Chung D (2004) Electrically conductive cement-based materials. Adv Cem Res 16(4):167–176CrossRef
8.
Zurück zum Zitat Monteiro AO, Cachim PB, Costa PM (2017) Self-sensing piezoresistive cement composite loaded with carbon black particles. Cement Concr Compos 81:59–65CrossRef Monteiro AO, Cachim PB, Costa PM (2017) Self-sensing piezoresistive cement composite loaded with carbon black particles. Cement Concr Compos 81:59–65CrossRef
9.
Zurück zum Zitat Han B et al (2011) Nickel particle-based self-sensing pavement for vehicle detection. Measurement 44(9):1645–1650CrossRef Han B et al (2011) Nickel particle-based self-sensing pavement for vehicle detection. Measurement 44(9):1645–1650CrossRef
10.
Zurück zum Zitat Hong S et al (2019) Evaluating microstructure and self-sensing properties of high-strength concrete with electric-arc-furnace oxidizing slag. J Korean Soc Hazard Mitig 19(5):189–197CrossRef Hong S et al (2019) Evaluating microstructure and self-sensing properties of high-strength concrete with electric-arc-furnace oxidizing slag. J Korean Soc Hazard Mitig 19(5):189–197CrossRef
11.
Zurück zum Zitat Baeza FJ et al (2018) Influence of recycled slag aggregates on the conductivity and strain sensing capacity of carbon fiber reinforced cement mortars. Constr Build Mater 184:311–319CrossRef Baeza FJ et al (2018) Influence of recycled slag aggregates on the conductivity and strain sensing capacity of carbon fiber reinforced cement mortars. Constr Build Mater 184:311–319CrossRef
12.
Zurück zum Zitat Kim H, Han G, Byun T (1999) A study on the characteristics of LD slag aggregates. J RIST 13(3):285–289 Kim H, Han G, Byun T (1999) A study on the characteristics of LD slag aggregates. J RIST 13(3):285–289
13.
Zurück zum Zitat Alonso C, Andrade C, González J (1988) Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem Concr Res 18(5):687–698CrossRef Alonso C, Andrade C, González J (1988) Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem Concr Res 18(5):687–698CrossRef
14.
Zurück zum Zitat Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res 23(3):724–742CrossRef Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res 23(3):724–742CrossRef
15.
Zurück zum Zitat Polder RBB (2001) Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Constr Build Mater 15(2–3):125–131CrossRef Polder RBB (2001) Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Constr Build Mater 15(2–3):125–131CrossRef
16.
Zurück zum Zitat Andrade C (2005) Model for prediction of reinforced concrete service life based on electrical resistivity. Ibracon Struct Mater J 1(1) Andrade C (2005) Model for prediction of reinforced concrete service life based on electrical resistivity. Ibracon Struct Mater J 1(1)
17.
Zurück zum Zitat Vipulanandan C, Mohammed A, Samuel RG (2017) Smart bentonite drilling muds modified with iron oxide nanoparticles and characterized based on the electrical resistivity and rheological properties with varying magnetic field strengths and temperatures. In: Offshore technology conference, p D041S045R005. OTC Vipulanandan C, Mohammed A, Samuel RG (2017) Smart bentonite drilling muds modified with iron oxide nanoparticles and characterized based on the electrical resistivity and rheological properties with varying magnetic field strengths and temperatures. In: Offshore technology conference, p D041S045R005. OTC
18.
Zurück zum Zitat Hong S-H et al (2020) Effects of steel-making slag and moisture on electrical properties of concrete. Materials 13(12):2675CrossRef Hong S-H et al (2020) Effects of steel-making slag and moisture on electrical properties of concrete. Materials 13(12):2675CrossRef
19.
Zurück zum Zitat Maslehuddin M et al (2003) comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 17(2):105–112CrossRef Maslehuddin M et al (2003) comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 17(2):105–112CrossRef
20.
Zurück zum Zitat Abu-Eishah SI, El-Dieb AS, Bedir MS (2012) Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr Build Mater 34:249–256CrossRef Abu-Eishah SI, El-Dieb AS, Bedir MS (2012) Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr Build Mater 34:249–256CrossRef
21.
Zurück zum Zitat Pellegrino C et al (2013) Properties of concretes with black/oxidizing electric arc furnace slag aggregate. Cement Concr Compos 37:232–240CrossRef Pellegrino C et al (2013) Properties of concretes with black/oxidizing electric arc furnace slag aggregate. Cement Concr Compos 37:232–240CrossRef
22.
Zurück zum Zitat Wu S et al (2007) utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ 42(7):2580–2585CrossRef Wu S et al (2007) utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ 42(7):2580–2585CrossRef
23.
Zurück zum Zitat Pasetto M, Baldo N (2011) Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Constr Build Mater 25(8):3458–3468CrossRef Pasetto M, Baldo N (2011) Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Constr Build Mater 25(8):3458–3468CrossRef
24.
Zurück zum Zitat Chunlin L, Kunpeng Z, Depeng C (2011) Possibility of concrete prepared with steel slag as fine and coarse aggregates: a preliminary study. Procedia Eng 24:412–416CrossRef Chunlin L, Kunpeng Z, Depeng C (2011) Possibility of concrete prepared with steel slag as fine and coarse aggregates: a preliminary study. Procedia Eng 24:412–416CrossRef
25.
Zurück zum Zitat Manso JM, Gonzalez JJ, Polanco JA (2004) Electric arc furnace slag in concrete. J Mater Civ Eng 16(6):639–645CrossRef Manso JM, Gonzalez JJ, Polanco JA (2004) Electric arc furnace slag in concrete. J Mater Civ Eng 16(6):639–645CrossRef
26.
Zurück zum Zitat Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manage 21(3):285–293CrossRef Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manage 21(3):285–293CrossRef
27.
Zurück zum Zitat Pellegrino C, Gaddo V (2009) Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement Concr Compos 31(9):663–671CrossRef Pellegrino C, Gaddo V (2009) Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement Concr Compos 31(9):663–671CrossRef
28.
Zurück zum Zitat Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118–1125CrossRef Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118–1125CrossRef
29.
Zurück zum Zitat Santamaría A et al (2017) Self-compacting concrete incorporating electric arc-furnace steel-making slag as aggregate. Mater Des 115:179–193CrossRef Santamaría A et al (2017) Self-compacting concrete incorporating electric arc-furnace steel-making slag as aggregate. Mater Des 115:179–193CrossRef
30.
Zurück zum Zitat Pomaro B et al (2019) Gamma-ray shielding properties of heavyweight concrete with Electric Arc Furnace slag as aggregate: an experimental and numerical study. Constr Build Mater 200:188–197CrossRef Pomaro B et al (2019) Gamma-ray shielding properties of heavyweight concrete with Electric Arc Furnace slag as aggregate: an experimental and numerical study. Constr Build Mater 200:188–197CrossRef
31.
Zurück zum Zitat Zanini MAA (2019) Structural reliability of bridges realized with reinforced concretes containing electric arc furnace slag aggregates. Eng Struct 188:305–319CrossRef Zanini MAA (2019) Structural reliability of bridges realized with reinforced concretes containing electric arc furnace slag aggregates. Eng Struct 188:305–319CrossRef
32.
Zurück zum Zitat Faleschini F, Zanini MA, Toska K (2019) Seismic reliability assessment of code-conforming reinforced concrete buildings made with electric arc furnace slag aggregates. Eng Struct 195:324–339CrossRef Faleschini F, Zanini MA, Toska K (2019) Seismic reliability assessment of code-conforming reinforced concrete buildings made with electric arc furnace slag aggregates. Eng Struct 195:324–339CrossRef
33.
Zurück zum Zitat Piro NS, Mohammed AS, Hamad SM (2023) Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: a comprehensive review. Mater Today Commun, 106573. Piro NS, Mohammed AS, Hamad SM (2023) Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: a comprehensive review. Mater Today Commun, 106573.
34.
Zurück zum Zitat San-José JT et al (2014) The performance of steel-making slag concretes in the hardened state. Mater Des 60:612–619CrossRef San-José JT et al (2014) The performance of steel-making slag concretes in the hardened state. Mater Des 60:612–619CrossRef
35.
Zurück zum Zitat Saxena S, Tembhurkar AR (2018) Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete. Constr Build Mater 165:126–137CrossRef Saxena S, Tembhurkar AR (2018) Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete. Constr Build Mater 165:126–137CrossRef
36.
Zurück zum Zitat Adegoloye G et al (2015) Concretes made of EAF slag and AOD slag aggregates from stainless steel process: mechanical properties and durability. Constr Build Mater 76:313–321CrossRef Adegoloye G et al (2015) Concretes made of EAF slag and AOD slag aggregates from stainless steel process: mechanical properties and durability. Constr Build Mater 76:313–321CrossRef
37.
Zurück zum Zitat Netinger I, Bjegović D, Vrhovac G (2011) Utilisation of steel slag as an aggregate in concrete. Mater Struct 44:1565–1575CrossRef Netinger I, Bjegović D, Vrhovac G (2011) Utilisation of steel slag as an aggregate in concrete. Mater Struct 44:1565–1575CrossRef
38.
Zurück zum Zitat Pang B, Zhou Z, Xu H (2015) Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater 84:454–467CrossRef Pang B, Zhou Z, Xu H (2015) Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater 84:454–467CrossRef
39.
Zurück zum Zitat Guo Y et al (2018) Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Constr Build Mater 192:194–201CrossRef Guo Y et al (2018) Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Constr Build Mater 192:194–201CrossRef
40.
Zurück zum Zitat Guo Y et al (2019) utilization of unprocessed steel slag as fine aggregate in normal-and high-strength concrete. Constr Build Mater 204:41–49CrossRef Guo Y et al (2019) utilization of unprocessed steel slag as fine aggregate in normal-and high-strength concrete. Constr Build Mater 204:41–49CrossRef
41.
Zurück zum Zitat Abbas ZH, Majdi HS (2017) Study of heat of hydration of Portland cement used in Iraq. Case Stud Const Mater 7:154–162 Abbas ZH, Majdi HS (2017) Study of heat of hydration of Portland cement used in Iraq. Case Stud Const Mater 7:154–162
42.
Zurück zum Zitat Ahmed SM, Kamal I (2022) Electrical resistivity and compressive strength of cement mortar based on green magnetite nanoparticles and wastes from steel industry. Case Stud Const Mater 17:e01712 Ahmed SM, Kamal I (2022) Electrical resistivity and compressive strength of cement mortar based on green magnetite nanoparticles and wastes from steel industry. Case Stud Const Mater 17:e01712
43.
Zurück zum Zitat Martinez-Amariz A et al (2020) Compressive evaluation of mansory bricks produced with industrial byproduct aggregates. Int J Appl Ceram Technol 17(6):2681–2689CrossRef Martinez-Amariz A et al (2020) Compressive evaluation of mansory bricks produced with industrial byproduct aggregates. Int J Appl Ceram Technol 17(6):2681–2689CrossRef
44.
Zurück zum Zitat Piro NS, Mohammed AS, Hamad SM (2023) Compressive strength and piezoresistivity of smart cement paste modified with waste steel slag. J Build Eng 70:106393CrossRef Piro NS, Mohammed AS, Hamad SM (2023) Compressive strength and piezoresistivity of smart cement paste modified with waste steel slag. J Build Eng 70:106393CrossRef
45.
Zurück zum Zitat Bawa S, Kumar B, Basheer A (2018) Effect of steel slag as partial replacement of fine aggregate on mechanical properties of concrete. In: Proceedings of national conference: advanced structures, materials and methodology in civil engineering (ASMMCE-2018), November Bawa S, Kumar B, Basheer A (2018) Effect of steel slag as partial replacement of fine aggregate on mechanical properties of concrete. In: Proceedings of national conference: advanced structures, materials and methodology in civil engineering (ASMMCE-2018), November
46.
Zurück zum Zitat García-Macías E et al (2017) Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications. Compos Struct 163:195–215CrossRef García-Macías E et al (2017) Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications. Compos Struct 163:195–215CrossRef
47.
Zurück zum Zitat Bogas JA, Gomes T (2015) Mechanical and durability behaviour of structural lightweight concrete produced with volcanic scoria. Arab J Sci Eng 40(3):705–717CrossRef Bogas JA, Gomes T (2015) Mechanical and durability behaviour of structural lightweight concrete produced with volcanic scoria. Arab J Sci Eng 40(3):705–717CrossRef
48.
Zurück zum Zitat Tumidajski PJ (1996) Electrical conductivity of Portland cement mortars. Cem Concr Res 26(4):529–534CrossRef Tumidajski PJ (1996) Electrical conductivity of Portland cement mortars. Cem Concr Res 26(4):529–534CrossRef
49.
Zurück zum Zitat ASTM C143 (2015) Standard test method for slump of hydraulic-cement concrete. Book of ASTM Standards.. ASTM C143 (2015) Standard test method for slump of hydraulic-cement concrete. Book of ASTM Standards..
50.
Zurück zum Zitat Sassani A et al (2017) Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Constr Build Mater 152:168–181CrossRef Sassani A et al (2017) Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Constr Build Mater 152:168–181CrossRef
51.
Zurück zum Zitat El-Dieb AS et al (2018) Multifunctional electrically conductive concrete using different fillers. J Build Eng 15:61–69CrossRef El-Dieb AS et al (2018) Multifunctional electrically conductive concrete using different fillers. J Build Eng 15:61–69CrossRef
52.
Zurück zum Zitat Lim S et al (2017) utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material. Constr Build Mater 157:42–50CrossRef Lim S et al (2017) utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material. Constr Build Mater 157:42–50CrossRef
53.
Zurück zum Zitat Lavagna L et al (2018) Cement-based composites containing functionalized carbon fibers. Cement Concr Compos 88:165–171CrossRef Lavagna L et al (2018) Cement-based composites containing functionalized carbon fibers. Cement Concr Compos 88:165–171CrossRef
54.
Zurück zum Zitat Ghosh P, Tran Q (2015) Influence of parameters on surface resistivity of concrete. Cement Concr Compos 62:134–145CrossRef Ghosh P, Tran Q (2015) Influence of parameters on surface resistivity of concrete. Cement Concr Compos 62:134–145CrossRef
55.
Zurück zum Zitat Chen C-T, Chang J-J, Yeih W-C (2014) The effects of specimen parameters on the resistivity of concrete. Constr Build Mater 71:35–43CrossRef Chen C-T, Chang J-J, Yeih W-C (2014) The effects of specimen parameters on the resistivity of concrete. Constr Build Mater 71:35–43CrossRef
56.
Zurück zum Zitat Ghosh P, Tran Q (2015) Correlation between bulk and surface resistivity of concrete. Int J Concrete Struct Mater 9(1):119–132CrossRef Ghosh P, Tran Q (2015) Correlation between bulk and surface resistivity of concrete. Int J Concrete Struct Mater 9(1):119–132CrossRef
57.
Zurück zum Zitat Minagawa H, Miyamoto S, Hisada M (2017) Relationship of apparent electrical resistivity measured by four-probe method with water content distribution in concrete. J Adv Concr Technol 15(6):278–289CrossRef Minagawa H, Miyamoto S, Hisada M (2017) Relationship of apparent electrical resistivity measured by four-probe method with water content distribution in concrete. J Adv Concr Technol 15(6):278–289CrossRef
58.
Zurück zum Zitat Garzon A et al (2014) Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars. Cement Concr Compos 53:249–257CrossRef Garzon A et al (2014) Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars. Cement Concr Compos 53:249–257CrossRef
59.
Zurück zum Zitat Ennahal I et al (2021) Performance of lightweight aggregates comprised of sediments and thermoplastic waste. Waste Biomass Valorizt 12(1):515–530CrossRef Ennahal I et al (2021) Performance of lightweight aggregates comprised of sediments and thermoplastic waste. Waste Biomass Valorizt 12(1):515–530CrossRef
60.
Zurück zum Zitat Yoon I-S (2019) Effect of water and chloride content on electrical resistivity in concrete Yoon I-S (2019) Effect of water and chloride content on electrical resistivity in concrete
61.
Zurück zum Zitat Vipulanandan C, Mohammed A (2015) Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications. Smart Mater Struct 24(12):125020CrossRef Vipulanandan C, Mohammed A (2015) Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications. Smart Mater Struct 24(12):125020CrossRef
62.
Zurück zum Zitat Ahmed HU, Mostafa RR, Mohammed A, Sihag P, Qadir A (2023) Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput Appl 35(3):2909–2926CrossRef Ahmed HU, Mostafa RR, Mohammed A, Sihag P, Qadir A (2023) Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput Appl 35(3):2909–2926CrossRef
Metadaten
Titel
Slump monitoring and electrical resistivity comparison in concrete modified with steel slag as fine aggregate replacement
verfasst von
Nzar Piro
Ahmed Salih Mohammed
Samir M. Hamad
Publikationsdatum
01.01.2024
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 1/2024
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-023-01304-5

Weitere Artikel der Ausgabe 1/2024

Innovative Infrastructure Solutions 1/2024 Zur Ausgabe