Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

27.04.2018

Smart Fusion of Multi-sensor Ubiquitous Signals of Mobile Device for Localization in GNSS-Denied Scenarios

verfasst von: Jichao Jiao, Zhongliang Deng, Qasim Ali Arain, Fei Li

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to support indoor and outdoor seamless location-based services (LBS), this paper proposes a smart fusion architecture for combing the ubiquitous signals of the mobile device integrated multi-modal sensors based on deep learning, which can fuse the vision/wireless/inertial information. The core of the fusion architecture is an improved four-layers deep neural network that integrating a convolutional neural network (CNN) and an improved particle filter. In the first place, inspired by creating the RGB-D image, we change the image gray by using a normalized magnetic strength and scale the image intensity by using a normalized WiFi signal strength, which results in a new image named RGB-WM image. Then, homogeneous features are extracted from the RGB-WM image based on the improved CNN for achieving context-awareness. Based on combing the context information, we introduce a new particle filter for fusing different information from multi-modal sensors. In order to evaluate our proposed positioning architecture, we have conducted extensive experiments in four different scenarios including our laboratory, and the campus of our university. Experimental results demonstrate the precision and recall of the RGB-WM image feature is 95.6 and 4.1% respectively. Furthermore, the proposed infrastructure-free fusion architecture reduced the root mean square error (RMSE) of locations in the range of 13.3–55.2% in walking experiments with two smartphones, under two motion conditions, which indicates a superior performance of our proposed image/WiFi/magnetic/inertial fusion architecture over the state-of-the-art with these four localization scenarios. The ubiquitous positioning accuracy of our proposed algorithm is less than 1.23 m, which can meet the requirement of the complex GNSS-denied regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deng, Z. A., Wang, G., Qin, D., Na, Z., Cui, Y., & Chen, J. (2016). Continuous indoor positioning fusing WiFi, smartphone sensors and landmarks. Sensors, 16, 1427.CrossRef Deng, Z. A., Wang, G., Qin, D., Na, Z., Cui, Y., & Chen, J. (2016). Continuous indoor positioning fusing WiFi, smartphone sensors and landmarks. Sensors, 16, 1427.CrossRef
2.
Zurück zum Zitat Tehrani, M., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52, 86–92.CrossRef Tehrani, M., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52, 86–92.CrossRef
3.
Zurück zum Zitat Arain, Q. A., Memon, H., Memon, I., Memon, M. H., Shaikh, R. A., & Mangi, F. A. (2017). Intelligent travel information platform based on location base services to predict user travel behavior from user-generated GPS traces. International Journal of Computers and Applications, 39, 1–14.CrossRef Arain, Q. A., Memon, H., Memon, I., Memon, M. H., Shaikh, R. A., & Mangi, F. A. (2017). Intelligent travel information platform based on location base services to predict user travel behavior from user-generated GPS traces. International Journal of Computers and Applications, 39, 1–14.CrossRef
4.
Zurück zum Zitat Memon, I., Ali, Q., Zubedi, A., & Mangi, F. A. (2017). DPMM: Dynamic pseudonym-based multiple mix-zones generation for mobile traveler. Multimedia Tools and Applications, 76, 24359–24388.CrossRef Memon, I., Ali, Q., Zubedi, A., & Mangi, F. A. (2017). DPMM: Dynamic pseudonym-based multiple mix-zones generation for mobile traveler. Multimedia Tools and Applications, 76, 24359–24388.CrossRef
5.
Zurück zum Zitat Makki, A., Siddig, A., Saad, M., & Bleakley, C. (2015). Survey of WiFi positioning using time-based techniques. Computer Networks, 88, 218–233.CrossRef Makki, A., Siddig, A., Saad, M., & Bleakley, C. (2015). Survey of WiFi positioning using time-based techniques. Computer Networks, 88, 218–233.CrossRef
6.
Zurück zum Zitat Jiao, J., Deng, Z., Xu, L., & Li, F. (2016). A hybrid of smartphone camera and basestation wide-area indoor positioning method. KSII Transactions on Internet & Information Systems, 10, 723–743. Jiao, J., Deng, Z., Xu, L., & Li, F. (2016). A hybrid of smartphone camera and basestation wide-area indoor positioning method. KSII Transactions on Internet & Information Systems, 10, 723–743.
7.
Zurück zum Zitat Chen, L., Pei, L., Kuusniemi, H., Chen, Y. W., Kroger, T., & Chen, R. Z. (2013). Bayesian fusion for indoor positioning using bluetooth fingerprints. Wireless Personal Communications, 70, 1735–1745.CrossRef Chen, L., Pei, L., Kuusniemi, H., Chen, Y. W., Kroger, T., & Chen, R. Z. (2013). Bayesian fusion for indoor positioning using bluetooth fingerprints. Wireless Personal Communications, 70, 1735–1745.CrossRef
8.
Zurück zum Zitat Ahmed, H. I., Wei, P., Memon, I., Du, Y., & Xie, W. (2013). Estimation of time difference of arrival (TDoA) for the source radiates BPSK signal. IJCSI International Journal of Computer Science Issues, 10, 1694–0784. Ahmed, H. I., Wei, P., Memon, I., Du, Y., & Xie, W. (2013). Estimation of time difference of arrival (TDoA) for the source radiates BPSK signal. IJCSI International Journal of Computer Science Issues, 10, 1694–0784.
9.
Zurück zum Zitat De Angelis, G., Pasku, V., De Angelis, A., Dionigi, M., Mongiardo, M., Moschitta, A., et al. (2015). An indoor AC magnetic positioning system. IEEE Transactions on Instrumentation and Measurement, 64, 1275–1283. De Angelis, G., Pasku, V., De Angelis, A., Dionigi, M., Mongiardo, M., Moschitta, A., et al. (2015). An indoor AC magnetic positioning system. IEEE Transactions on Instrumentation and Measurement, 64, 1275–1283.
10.
Zurück zum Zitat Li, Y., Zhuang, Y., Lan, H., Zhang, P., Niu, X., & El-Sheimy, N. (2015). WiFi-aided magnetic matching for indoor navigation with consumer portable devices. Micromachines, 6, 747–764.CrossRef Li, Y., Zhuang, Y., Lan, H., Zhang, P., Niu, X., & El-Sheimy, N. (2015). WiFi-aided magnetic matching for indoor navigation with consumer portable devices. Micromachines, 6, 747–764.CrossRef
11.
Zurück zum Zitat Wang, F., Cui, J., Phang, S. K., Chen, B. M., & Lee, T. H. (2013). A mono-camera and scanning laser range finder based UAV indoor navigation system. In Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, 2013 (pp. 694–701). IEEE. Wang, F., Cui, J., Phang, S. K., Chen, B. M., & Lee, T. H. (2013). A mono-camera and scanning laser range finder based UAV indoor navigation system. In Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, 2013 (pp. 694–701). IEEE.
12.
Zurück zum Zitat Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., Dutta, P., & Arbor, A. (2014). Luxapose: Indoor positioning with mobile phones and visible light. In Mobicom’14 (pp. 299–301). Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., Dutta, P., & Arbor, A. (2014). Luxapose: Indoor positioning with mobile phones and visible light. In Mobicom’14 (pp. 299–301).
13.
Zurück zum Zitat Liu, Z., Zhang, L., Liu, Q., Yin, Y., Cheng, L., & Zimmermann, R. (2016). Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Transactions on Multimedia, 9210, 1–15. Liu, Z., Zhang, L., Liu, Q., Yin, Y., Cheng, L., & Zimmermann, R. (2016). Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Transactions on Multimedia, 9210, 1–15.
14.
Zurück zum Zitat Santoso, F., Garratt, M. A., & Anavatti, S. G. (2016). Visual-inertial navigation systems for aerial robotics: Sensor fusion and technology. IEEE Transactions on Automation Science and Engineering, 14, 260–275.CrossRef Santoso, F., Garratt, M. A., & Anavatti, S. G. (2016). Visual-inertial navigation systems for aerial robotics: Sensor fusion and technology. IEEE Transactions on Automation Science and Engineering, 14, 260–275.CrossRef
15.
Zurück zum Zitat Li, Y., Zhuang, Y., Zhang, P., Lan, H., Niu, X., & El-Sheimy, N. (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101–119.CrossRef Li, Y., Zhuang, Y., Zhang, P., Lan, H., Niu, X., & El-Sheimy, N. (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101–119.CrossRef
16.
Zurück zum Zitat Wu, Z., Jedari, E., Muscedere, R., & Rashidzadeh, R. (2015). Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localization. Computer Communications, 83, 64–71.CrossRef Wu, Z., Jedari, E., Muscedere, R., & Rashidzadeh, R. (2015). Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localization. Computer Communications, 83, 64–71.CrossRef
17.
Zurück zum Zitat Wen, F., Zhang, Z., Wang, K., Sheng, G., & Zhang, G. (2018). Angle estimation and mutual coupling self-calibration for ULA-based bistatic MIMO radar. Signal Processing, 144, 61–67.CrossRef Wen, F., Zhang, Z., Wang, K., Sheng, G., & Zhang, G. (2018). Angle estimation and mutual coupling self-calibration for ULA-based bistatic MIMO radar. Signal Processing, 144, 61–67.CrossRef
18.
Zurück zum Zitat Wen, F., Zhang, Z., Zhang, G., Zhang, Y., Wang, X., & Zhang, X. (2017). A tensor-based covariance differencing method for direction estimation in bistatic MIMO radar with unknown spatial colored noise. IEEE Access, 5, 18451–18458.CrossRef Wen, F., Zhang, Z., Zhang, G., Zhang, Y., Wang, X., & Zhang, X. (2017). A tensor-based covariance differencing method for direction estimation in bistatic MIMO radar with unknown spatial colored noise. IEEE Access, 5, 18451–18458.CrossRef
19.
Zurück zum Zitat Wen, F., Xiong, X., Su, J., & Zhang, Z. (2017). Angle estimation for bistatic MIMO radar in the presence of spatial colored noise. Signal Processing, 134, 261–267.CrossRef Wen, F., Xiong, X., Su, J., & Zhang, Z. (2017). Angle estimation for bistatic MIMO radar in the presence of spatial colored noise. Signal Processing, 134, 261–267.CrossRef
20.
Zurück zum Zitat Wen, F., Xiong, X., & Zhang, Z. (2017). Angle and mutual coupling estimation in bistatic MIMO radar based on PARAFAC decomposition. Digital Signal Processing, 65, 1–10.MathSciNetCrossRef Wen, F., Xiong, X., & Zhang, Z. (2017). Angle and mutual coupling estimation in bistatic MIMO radar based on PARAFAC decomposition. Digital Signal Processing, 65, 1–10.MathSciNetCrossRef
21.
Zurück zum Zitat Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., et al. (2017). Learning to navigate. In Iclr (pp. 1–11). Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., et al. (2017). Learning to navigate. In Iclr (pp. 1–11).
22.
Zurück zum Zitat Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2014 (pp. 806–813). Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2014 (pp. 806–813).
23.
Zurück zum Zitat Jiang, W. (2016). CNN-RNN: A unified framework for multi-label image classification. Cvpr, 2016, 2285–2294. Jiang, W. (2016). CNN-RNN: A unified framework for multi-label image classification. Cvpr, 2016, 2285–2294.
24.
Zurück zum Zitat Greene, M. R., Baldassano, C., Esteva, A., Beck, D. M., & Fei-Fei, L. (2016). Visual scenes are categorized by function. Journal of Experimental Psychology: General, 145, 82–94.CrossRef Greene, M. R., Baldassano, C., Esteva, A., Beck, D. M., & Fei-Fei, L. (2016). Visual scenes are categorized by function. Journal of Experimental Psychology: General, 145, 82–94.CrossRef
25.
Zurück zum Zitat Rusdinar, A., Kim, J., Lee, J., & Kim, S. (2012). Implementation of real-time positioning system using extended Kalman filter and artificial landmark on ceiling. Journal of Mechanical Science and Technology, 26, 949–958.CrossRef Rusdinar, A., Kim, J., Lee, J., & Kim, S. (2012). Implementation of real-time positioning system using extended Kalman filter and artificial landmark on ceiling. Journal of Mechanical Science and Technology, 26, 949–958.CrossRef
26.
Zurück zum Zitat Bae, H., Golparvar-Fard, M., & White, J. (2015). Image-based localization and content authoring in structure-from-motion point cloud models for real-time field reporting applications. Journal of Computing in Civil Engineering, 29, B4014008.CrossRef Bae, H., Golparvar-Fard, M., & White, J. (2015). Image-based localization and content authoring in structure-from-motion point cloud models for real-time field reporting applications. Journal of Computing in Civil Engineering, 29, B4014008.CrossRef
27.
Zurück zum Zitat Jiao, J., Deng, Z., Mo, J., & Li, C. (2016). Turbo fusion of LPQ and HOG feature sets for indoor positioning using smartphone camera. Electronic Imaging, 2016, 1–7.CrossRef Jiao, J., Deng, Z., Mo, J., & Li, C. (2016). Turbo fusion of LPQ and HOG feature sets for indoor positioning using smartphone camera. Electronic Imaging, 2016, 1–7.CrossRef
28.
Zurück zum Zitat Papaioannou, S., Wen, H., Markham, A., & Trigoni, N. (2015). Fusion of radio and camera sensor data for accurate indoor positioning. In Proceedings—11th IEEE international conference on mobile ad hoc and sensor systems, MASS 2014 (pp. 109–117). Papaioannou, S., Wen, H., Markham, A., & Trigoni, N. (2015). Fusion of radio and camera sensor data for accurate indoor positioning. In Proceedings11th IEEE international conference on mobile ad hoc and sensor systems, MASS 2014 (pp. 109–117).
29.
Zurück zum Zitat Vemprala, S., & Saripalli, S. (2016). Vision based collaborative localization for multirotor vehicles. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, 2016 (pp. 1653–1658). IEEE. Vemprala, S., & Saripalli, S. (2016). Vision based collaborative localization for multirotor vehicles. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, 2016 (pp. 1653–1658). IEEE.
30.
Zurück zum Zitat Pei, L., Zhang, M., Zou, D., Chen, R., & Chen, Y. (2016). A survey of crowd sensing opportunistic signals for indoor localization. In Mobile Information Systems (vol. 2016). Pei, L., Zhang, M., Zou, D., Chen, R., & Chen, Y. (2016). A survey of crowd sensing opportunistic signals for indoor localization. In Mobile Information Systems (vol. 2016).
31.
Zurück zum Zitat Chai, W. N., Chen, C., Edwan, E., Zhang, J. Y., Loffeld, O., & IEEE (2012). 2D/3D indoor navigation based on multi-sensor assisted pedestrian navigation in Wi-Fi environments. In 2012 Ubiquitous positioning, indoor navigation, and location based service (Upinlbs). Chai, W. N., Chen, C., Edwan, E., Zhang, J. Y., Loffeld, O., & IEEE (2012). 2D/3D indoor navigation based on multi-sensor assisted pedestrian navigation in Wi-Fi environments. In 2012 Ubiquitous positioning, indoor navigation, and location based service (Upinlbs).
32.
Zurück zum Zitat Chen, Z., Zou, H., Jiang, H., Zhu, Q., Soh, Y. C., & Xie, L. (2015). Fusion of WiFi, smartphone sensors and landmarks using the kalman filter for indoor localization. Sensors (Switzerland), 15, 715–732.CrossRef Chen, Z., Zou, H., Jiang, H., Zhu, Q., Soh, Y. C., & Xie, L. (2015). Fusion of WiFi, smartphone sensors and landmarks using the kalman filter for indoor localization. Sensors (Switzerland), 15, 715–732.CrossRef
33.
Zurück zum Zitat Lee, S., Cho, B., Koo, B., Ryu, S., Choi, J., & Kim, S. (2015). Kalman filter-based indoor position tracking with self-calibration for RSS variation mitigation. International Journal of Distributed Sensor Networks, 11(8), 674635.CrossRef Lee, S., Cho, B., Koo, B., Ryu, S., Choi, J., & Kim, S. (2015). Kalman filter-based indoor position tracking with self-calibration for RSS variation mitigation. International Journal of Distributed Sensor Networks, 11(8), 674635.CrossRef
34.
Zurück zum Zitat Kleinert, M., Stilla, U., & IEEE. (2013). A sensor-centric EKF for inertial-aided visual odometry. In 2013 International conference on indoor positioning and indoor navigation (Ipin). Kleinert, M., Stilla, U., & IEEE. (2013). A sensor-centric EKF for inertial-aided visual odometry. In 2013 International conference on indoor positioning and indoor navigation (Ipin).
35.
Zurück zum Zitat Deng, Z.-A., Hu, Y., Yu, J., & Na, Z. (2015). Extended Kalman filter for real time indoor localization by fusing WiFi and smartphone inertial sensors. Micromachines, 6, 523–543.CrossRef Deng, Z.-A., Hu, Y., Yu, J., & Na, Z. (2015). Extended Kalman filter for real time indoor localization by fusing WiFi and smartphone inertial sensors. Micromachines, 6, 523–543.CrossRef
36.
Zurück zum Zitat Chen, X., Wang, X., & Xu, Y. (2014). Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended kalman filter. Sensors, 14, 23630–23649.CrossRef Chen, X., Wang, X., & Xu, Y. (2014). Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended kalman filter. Sensors, 14, 23630–23649.CrossRef
37.
Zurück zum Zitat Xu, Y., Chen, X., & Li, Q. (2014). Adaptive iterated extended kalman filter and its application to autonomous integrated navigation for indoor robot. The Scientific World Journal, 2014, 2356–6140. Xu, Y., Chen, X., & Li, Q. (2014). Adaptive iterated extended kalman filter and its application to autonomous integrated navigation for indoor robot. The Scientific World Journal, 2014, 2356–6140.
38.
Zurück zum Zitat Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14, 28–44.CrossRef Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14, 28–44.CrossRef
39.
Zurück zum Zitat Doucet, A., & Johansen, A. M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12, 3.MATH Doucet, A., & Johansen, A. M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12, 3.MATH
40.
Zurück zum Zitat Levchev, P., Krishnan, M. N., Yu, C., Menke, J., & Zakhor, A. (2014). Simultaneous fingerprinting and mapping for multimodal image and WiFi indoor positioning. In IPIN 2014–2014 international conference on indoor positioning and indoor navigation (pp. 442–450). Levchev, P., Krishnan, M. N., Yu, C., Menke, J., & Zakhor, A. (2014). Simultaneous fingerprinting and mapping for multimodal image and WiFi indoor positioning. In IPIN 20142014 international conference on indoor positioning and indoor navigation (pp. 442–450).
41.
Zurück zum Zitat Guerrero, L. A., Vasquez, F., & Ochoa, S. F. (2012). An indoor navigation system for the visually impaired. Sensors, 12, 8236–8258.CrossRef Guerrero, L. A., Vasquez, F., & Ochoa, S. F. (2012). An indoor navigation system for the visually impaired. Sensors, 12, 8236–8258.CrossRef
42.
Zurück zum Zitat Pak, J. M., Ahn, C. K., Shmaliy, Y. S., & Lim, M. T. (2015). Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering. IEEE Transactions on Industrial Informatics, 11, 1089–1098.CrossRef Pak, J. M., Ahn, C. K., Shmaliy, Y. S., & Lim, M. T. (2015). Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering. IEEE Transactions on Industrial Informatics, 11, 1089–1098.CrossRef
43.
Zurück zum Zitat Xie, H., Gu, T., Tao, X., Ye, H., & Lu, J. (2016). A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone. IEEE Transactions on Mobile Computing, 15, 1877–1892.CrossRef Xie, H., Gu, T., Tao, X., Ye, H., & Lu, J. (2016). A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone. IEEE Transactions on Mobile Computing, 15, 1877–1892.CrossRef
44.
Zurück zum Zitat Perez, I., Pinchin, J., Brown, M., Blum, J., & Sharples, S. (2016). Unsupervised labelling of sequential data for location identification in indoor environments. Expert Systems with Applications, 61, 386–393.CrossRef Perez, I., Pinchin, J., Brown, M., Blum, J., & Sharples, S. (2016). Unsupervised labelling of sequential data for location identification in indoor environments. Expert Systems with Applications, 61, 386–393.CrossRef
45.
Zurück zum Zitat He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys and Tutorials, 18, 466–490.CrossRef He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys and Tutorials, 18, 466–490.CrossRef
46.
Zurück zum Zitat Memon, M. H., Li, J.-P., Memon, I., & Arain, Q. A. (2017). GEO matching regions: Multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications, 76, 15377–15411.CrossRef Memon, M. H., Li, J.-P., Memon, I., & Arain, Q. A. (2017). GEO matching regions: Multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications, 76, 15377–15411.CrossRef
47.
Zurück zum Zitat Zhang, W., Liu, K., Zhang, W., Zhang, Y., & Gu, J. (2016). Deep Neural Networks for wireless localization in indoor and outdoor environments. Neurocomputing, 194, 279–287.CrossRef Zhang, W., Liu, K., Zhang, W., Zhang, Y., & Gu, J. (2016). Deep Neural Networks for wireless localization in indoor and outdoor environments. Neurocomputing, 194, 279–287.CrossRef
48.
Zurück zum Zitat Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Towards the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.CrossRef Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Towards the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.CrossRef
49.
Zurück zum Zitat De Silva, O., Mann, G. K. I., & Gosine, R. G. (2015). An ultrasonic and vision-based relative positioning sensor for multirobot localization. Sensors Journal, IEEE, 15, 1716–1726.CrossRef De Silva, O., Mann, G. K. I., & Gosine, R. G. (2015). An ultrasonic and vision-based relative positioning sensor for multirobot localization. Sensors Journal, IEEE, 15, 1716–1726.CrossRef
50.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
51.
52.
Zurück zum Zitat Ma, R., Guo, Q., Hu, C., & Xue, J. (2015). An improved WiFi indoor positioning algorithm by weighted fusion. Sensors (Basel, Switzerland), 15, 21824–21843.CrossRef Ma, R., Guo, Q., Hu, C., & Xue, J. (2015). An improved WiFi indoor positioning algorithm by weighted fusion. Sensors (Basel, Switzerland), 15, 21824–21843.CrossRef
Metadaten
Titel
Smart Fusion of Multi-sensor Ubiquitous Signals of Mobile Device for Localization in GNSS-Denied Scenarios
verfasst von
Jichao Jiao
Zhongliang Deng
Qasim Ali Arain
Fei Li
Publikationsdatum
27.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5725-2

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt