Skip to main content
Erschienen in: Neural Computing and Applications 3/2015

01.04.2015 | Original Article

Soft variable structure controller design for constrained systems based on S-class functions

verfasst von: Yunlong Liu, Shanmao Gu, Yonggui Kao, Shuhong Tang

Erschienen in: Neural Computing and Applications | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A soft variable structure control (SVSC) strategy based on S-class functions is addressed in this paper. Firstly, the definition of SVSC strategy is given, the structure of SVSC system under constrained control input is analyzed, and S-class functions with smoothness, strict monotonicity, and saturation are presented. Secondly, the sufficient condition on the stability of SVSC system is obtained by Lyapunov stability theory. A soft variable structure controller based on S-class functions is developed aiming at optimizing the smoothness problem of the SVSC systems based on variable saturations, and the chattering problem of sliding mode control (SMC) systems. Then, the concrete algorithm on SVSC strategy based on sigmoid functions is obtained. Finally, a simulation example is carried out to verify the feasibility and effectiveness of the SVSC strategy, and compared with SMC strategy, high regulation rate is achieved, settling time is shorted, and the system chattering can be reduced by the proposed strategy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hung JY, Gao WB, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40:2–22CrossRef Hung JY, Gao WB, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40:2–22CrossRef
3.
Zurück zum Zitat Young KD, Utkin VI, Özgüner Ü (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7:328–342CrossRef Young KD, Utkin VI, Özgüner Ü (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7:328–342CrossRef
4.
Zurück zum Zitat Xia Y, Fu M, Shi P, Wang M (2010) Robust sliding mode control for uncertain discrete time systems with time delay. IET Control Theory Appl 4:613–624CrossRefMathSciNet Xia Y, Fu M, Shi P, Wang M (2010) Robust sliding mode control for uncertain discrete time systems with time delay. IET Control Theory Appl 4:613–624CrossRefMathSciNet
5.
Zurück zum Zitat Lin Z, Xia Y, Shi P, Wu H (2011) Robust sliding mode control for uncertain linear discrete systems independent of time-delay. Int J Innov Comput Inf Control 7:869–881 Lin Z, Xia Y, Shi P, Wu H (2011) Robust sliding mode control for uncertain linear discrete systems independent of time-delay. Int J Innov Comput Inf Control 7:869–881
6.
Zurück zum Zitat Wu L, Zheng W, Gao H (2013) Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans Autom Control 58:785–793CrossRef Wu L, Zheng W, Gao H (2013) Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans Autom Control 58:785–793CrossRef
7.
Zurück zum Zitat Chen B, Niu Y, Zou Y (2013) Sliding mode control for stochastic Markovian jumping systems with incomplete transition rate. IET Control Theory Appl 7:1330–1338CrossRefMathSciNet Chen B, Niu Y, Zou Y (2013) Sliding mode control for stochastic Markovian jumping systems with incomplete transition rate. IET Control Theory Appl 7:1330–1338CrossRefMathSciNet
8.
Zurück zum Zitat Wu L, Su X, Shi P (2012) Sliding mode control with bounded L 2 gain performance of Markovian jump singular time-delay systems. Automatica 48:1929–1933CrossRefMATHMathSciNet Wu L, Su X, Shi P (2012) Sliding mode control with bounded L 2 gain performance of Markovian jump singular time-delay systems. Automatica 48:1929–1933CrossRefMATHMathSciNet
9.
Zurück zum Zitat Wu L, Shi P, Gao H (2010) State estimation and sliding mode control of Markovian jump singular systems. IEEE Trans Autom Control 55:1213–1219CrossRefMathSciNet Wu L, Shi P, Gao H (2010) State estimation and sliding mode control of Markovian jump singular systems. IEEE Trans Autom Control 55:1213–1219CrossRefMathSciNet
11.
Zurück zum Zitat Ma S, Boukas EK (2009) Stability and robust stabilization for uncertain discrete stochastic hybrid singular systems with time delay. IET Control Theory Appl 3:1217–1225CrossRefMathSciNet Ma S, Boukas EK (2009) Stability and robust stabilization for uncertain discrete stochastic hybrid singular systems with time delay. IET Control Theory Appl 3:1217–1225CrossRefMathSciNet
12.
Zurück zum Zitat Yahyazadeh M, Noei Ranjbar A, Ghaderi R (2011) Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. ISA Trans 50:262–267CrossRef Yahyazadeh M, Noei Ranjbar A, Ghaderi R (2011) Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. ISA Trans 50:262–267CrossRef
13.
Zurück zum Zitat Tang GY, Dong R, Gao HW (2008) Optimal sliding mode control for nonlinear systems with time-delay. Nonlinear Anal Hybrid Syst 2:891–899CrossRefMATHMathSciNet Tang GY, Dong R, Gao HW (2008) Optimal sliding mode control for nonlinear systems with time-delay. Nonlinear Anal Hybrid Syst 2:891–899CrossRefMATHMathSciNet
14.
Zurück zum Zitat Ma S, Boukas EK (2009) A singular system approach to robust sliding mode control for uncertain Markov jump systems. Automatica 45:2707–2713CrossRefMATHMathSciNet Ma S, Boukas EK (2009) A singular system approach to robust sliding mode control for uncertain Markov jump systems. Automatica 45:2707–2713CrossRefMATHMathSciNet
15.
Zurück zum Zitat Wu L, Zheng WX (2009) Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45:2120–2127CrossRefMATHMathSciNet Wu L, Zheng WX (2009) Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45:2120–2127CrossRefMATHMathSciNet
16.
Zurück zum Zitat Efe MÖ (2004) Discrete time neuro sliding mode control with a task-specific output error. Neural Comput Appl 13:211–220CrossRef Efe MÖ (2004) Discrete time neuro sliding mode control with a task-specific output error. Neural Comput Appl 13:211–220CrossRef
17.
Zurück zum Zitat Fei J, Ding H, Yang Y (2014) Robust adaptive neural sliding mode control of MEMS triaxial gyroscope with angular velocity estimation. Neural Comput Appl 24:201–210CrossRef Fei J, Ding H, Yang Y (2014) Robust adaptive neural sliding mode control of MEMS triaxial gyroscope with angular velocity estimation. Neural Comput Appl 24:201–210CrossRef
18.
Zurück zum Zitat Zhao J, Bin J, Shi P, He Z (2014) Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int J Innov Comput Inf 10:293–302 Zhao J, Bin J, Shi P, He Z (2014) Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int J Innov Comput Inf 10:293–302
19.
Zurück zum Zitat Liu M, Shi P, Zhang L, Zhao X (2011) Fault tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer. IEEE Trans Circuit Syst I Regul Pap 58:2755–2764CrossRefMathSciNet Liu M, Shi P, Zhang L, Zhao X (2011) Fault tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer. IEEE Trans Circuit Syst I Regul Pap 58:2755–2764CrossRefMathSciNet
20.
Zurück zum Zitat Liu C (2014) A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method. Commun Nonlinear Sci 19:2012–2038CrossRef Liu C (2014) A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method. Commun Nonlinear Sci 19:2012–2038CrossRef
21.
Zurück zum Zitat Barambones O, Alkorta P, Durana JMG (2013) Sliding mode position control for real-time control of induction motors. Int J Innov Comput I 9:2741–2754 Barambones O, Alkorta P, Durana JMG (2013) Sliding mode position control for real-time control of induction motors. Int J Innov Comput I 9:2741–2754
22.
Zurück zum Zitat Juan F, Gerard L (2010) Variable structure control for power systems stabilization. Int J Electr Power Energy Syst 32:101–107CrossRef Juan F, Gerard L (2010) Variable structure control for power systems stabilization. Int J Electr Power Energy Syst 32:101–107CrossRef
23.
Zurück zum Zitat Chen F, Hou R, Jiang B, Tao G (2013) Study on fast terminal sliding mode control for a helicopter via quantum information technique and nonlinear fault observer. Int J Innov Comput Inf Control 9:3437–3447 Chen F, Hou R, Jiang B, Tao G (2013) Study on fast terminal sliding mode control for a helicopter via quantum information technique and nonlinear fault observer. Int J Innov Comput Inf Control 9:3437–3447
24.
Zurück zum Zitat Yakut O (2014) Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput Appl 24:1369–1379CrossRef Yakut O (2014) Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput Appl 24:1369–1379CrossRef
25.
Zurück zum Zitat Letizia C, Leo T, Orlando G (2002) Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. J Robot Syst 19:177–188CrossRef Letizia C, Leo T, Orlando G (2002) Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. J Robot Syst 19:177–188CrossRef
26.
Zurück zum Zitat Zhu S, Sun MX, He XX (2010) S-class functions based adaptive controller design for a class of periodically time-varying nonlinear systems. Acta Autom Sinica 36:1137–1143CrossRefMATHMathSciNet Zhu S, Sun MX, He XX (2010) S-class functions based adaptive controller design for a class of periodically time-varying nonlinear systems. Acta Autom Sinica 36:1137–1143CrossRefMATHMathSciNet
27.
Zurück zum Zitat Gao C, Liu Y, Li Y (2009) A reaching-law method for uncertain discrete variable-structure control systems. Control Theory Appl 26:781–785 Gao C, Liu Y, Li Y (2009) A reaching-law method for uncertain discrete variable-structure control systems. Control Theory Appl 26:781–785
28.
Zurück zum Zitat Liu Y (2012) Study on variable structure control strategy and its design for singular systems and delta operator systems. Ocean University of China, Qingdao Liu Y (2012) Study on variable structure control strategy and its design for singular systems and delta operator systems. Ocean University of China, Qingdao
29.
Zurück zum Zitat Becker C (1977) Description of variable structure control for a class of special bilinear systems. Control Eng 25:364–366MATH Becker C (1977) Description of variable structure control for a class of special bilinear systems. Control Eng 25:364–366MATH
30.
Zurück zum Zitat Franke D (1982) Exposition of soft variable structure control systems with input constraints. Control Eng 30:348–355MATH Franke D (1982) Exposition of soft variable structure control systems with input constraints. Control Eng 30:348–355MATH
31.
Zurück zum Zitat Wredenhagen GF, Bélanger PR, Miyazaki F (1994) Piecewise-linear LQ control for systems with input constraints. Automatica 30:403–416CrossRefMATH Wredenhagen GF, Bélanger PR, Miyazaki F (1994) Piecewise-linear LQ control for systems with input constraints. Automatica 30:403–416CrossRefMATH
34.
Zurück zum Zitat Liu Y, Zhang C, Gao C (2012) Dynamic soft variable structure control of singular systems. Commun Nonlinear Sci 17:3345–3352CrossRefMATHMathSciNet Liu Y, Zhang C, Gao C (2012) Dynamic soft variable structure control of singular systems. Commun Nonlinear Sci 17:3345–3352CrossRefMATHMathSciNet
35.
Zurück zum Zitat Li FX, Yuan Y (2013) Optimized design of control system based on dynamic soft variable structure. Acta Electron Sinica 41:1025–1029MathSciNet Li FX, Yuan Y (2013) Optimized design of control system based on dynamic soft variable structure. Acta Electron Sinica 41:1025–1029MathSciNet
36.
Zurück zum Zitat Liu Y, Gao C, Ren Q, Guo Z (2012) Soft variable structure control based on sigmoid functions for autonomous underwater vehicles. Electr Mach Control 16:90–95 Liu Y, Gao C, Ren Q, Guo Z (2012) Soft variable structure control based on sigmoid functions for autonomous underwater vehicles. Electr Mach Control 16:90–95
37.
Zurück zum Zitat Garofalo F, Celentano G, Glielmo L (1993) Stability robustness of interval matrices via Lyapunov quadratic forms. IEEE Trans Autom Control 38:281–284CrossRefMATHMathSciNet Garofalo F, Celentano G, Glielmo L (1993) Stability robustness of interval matrices via Lyapunov quadratic forms. IEEE Trans Autom Control 38:281–284CrossRefMATHMathSciNet
Metadaten
Titel
Soft variable structure controller design for constrained systems based on S-class functions
verfasst von
Yunlong Liu
Shanmao Gu
Yonggui Kao
Shuhong Tang
Publikationsdatum
01.04.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2015
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1748-0

Weitere Artikel der Ausgabe 3/2015

Neural Computing and Applications 3/2015 Zur Ausgabe

Advances in Intelligent Data Processing and Analysis

NECM: Neutrosophic evidential c-means clustering algorithm

Advances in Intelligent Data Processing and Analysis

Hybrid evolutionary algorithms for classification data mining

Premium Partner