Skip to main content
Erschienen in: Computational Mechanics 2/2019

19.06.2019 | Original Paper

Solving Bayesian inverse problems from the perspective of deep generative networks

verfasst von: Thomas Y. Hou, Ka Chun Lam, Pengchuan Zhang, Shumao Zhang

Erschienen in: Computational Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep generative networks have achieved great success in high dimensional density approximation, especially for applications in natural images and language. In this paper, we investigate their approximation capability in capturing the posterior distribution in Bayesian inverse problems by learning a transport map. Because only the unnormalized density of the posterior is available, training methods that learn from posterior samples, such as variational autoencoders and generative adversarial networks, are not applicable in our setting. We propose a class of network training methods that can be combined with sample-based Bayesian inference algorithms, such as various MCMC algorithms, ensemble Kalman filter and Stein variational gradient descent. Our experiment results show the pros and cons of deep generative networks in Bayesian inverse problems. They also reveal the potential of our proposed methodology in capturing high dimensional probability distributions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning, pp 214–223 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning, pp 214–223
3.
4.
Zurück zum Zitat Carmeli C, De Vito E, Toigo A, Umanitá V (2010) Vector valued reproducing kernel Hilbert spaces and universality. Anal Appl 8(01):19–61MathSciNetMATHCrossRef Carmeli C, De Vito E, Toigo A, Umanitá V (2010) Vector valued reproducing kernel Hilbert spaces and universality. Anal Appl 8(01):19–61MathSciNetMATHCrossRef
5.
Zurück zum Zitat Carreira-Perpinan MA, Hinton GE (2005) On contrastive divergence learning. In: Aistats, vol 10. Citeseer, pp 33–40 Carreira-Perpinan MA, Hinton GE (2005) On contrastive divergence learning. In: Aistats, vol 10. Citeseer, pp 33–40
6.
Zurück zum Zitat Chechkin GA, Piatnitski AL, Shamaev AS (2007) Homogenization: methods and applications, vol 234. American Mathematical Society, ProvidenceMATHCrossRef Chechkin GA, Piatnitski AL, Shamaev AS (2007) Homogenization: methods and applications, vol 234. American Mathematical Society, ProvidenceMATHCrossRef
7.
Zurück zum Zitat Chwialkowski K, Strathmann H, Gretton A (2016) A kernel test of goodness of fit. In: JMLR: workshop and conference proceedings Chwialkowski K, Strathmann H, Gretton A (2016) A kernel test of goodness of fit. In: JMLR: workshop and conference proceedings
8.
Zurück zum Zitat Cotter SL, Roberts GO, Stuart AM, White D (2013) MCMC methods for functions: modifying old algorithms to make them faster. Stat Sci 28:424–446MathSciNetMATHCrossRef Cotter SL, Roberts GO, Stuart AM, White D (2013) MCMC methods for functions: modifying old algorithms to make them faster. Stat Sci 28:424–446MathSciNetMATHCrossRef
9.
Zurück zum Zitat Cover TM, Thomas JA (2012) Elements of information theory. Wiley, HobokenMATH Cover TM, Thomas JA (2012) Elements of information theory. Wiley, HobokenMATH
11.
Zurück zum Zitat Dashti M, Law KJ, Stuart AM, Voss J (2013) MAP estimators and their consistency in Bayesian nonparametric inverse problems. Inverse Probl 29(9):095,017MathSciNetMATHCrossRef Dashti M, Law KJ, Stuart AM, Voss J (2013) MAP estimators and their consistency in Bayesian nonparametric inverse problems. Inverse Probl 29(9):095,017MathSciNetMATHCrossRef
12.
13.
Zurück zum Zitat Dziugaite GK, Roy DM, Ghahramani Z (2015) Training generative neural networks via maximum mean discrepancy optimization. In: Proceedings of the 31st conference on uncertainty in artificial intelligence, UAI’15. AUAI Press, pp 258–267 Dziugaite GK, Roy DM, Ghahramani Z (2015) Training generative neural networks via maximum mean discrepancy optimization. In: Proceedings of the 31st conference on uncertainty in artificial intelligence, UAI’15. AUAI Press, pp 258–267
14.
Zurück zum Zitat Efendiev Y, Hou TY (2009) Multiscale finite element methods: theory and applications, vol 4. Springer, BerlinMATH Efendiev Y, Hou TY (2009) Multiscale finite element methods: theory and applications, vol 4. Springer, BerlinMATH
15.
Zurück zum Zitat Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367CrossRef Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367CrossRef
16.
Zurück zum Zitat Geers MG, Kouznetsova VG, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182MATHCrossRef Geers MG, Kouznetsova VG, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182MATHCrossRef
17.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
18.
Zurück zum Zitat Hoffman M, Bach FR, Blei DM (2010) Online learning for latent Dirichlet allocation. In: Advances in neural information processing systems, pp 856–864 Hoffman M, Bach FR, Blei DM (2010) Online learning for latent Dirichlet allocation. In: Advances in neural information processing systems, pp 856–864
19.
Zurück zum Zitat Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach Learn Res 14(1):1303–1347MathSciNetMATH Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach Learn Res 14(1):1303–1347MathSciNetMATH
20.
Zurück zum Zitat Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 5967–5976 Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 5967–5976
21.
Zurück zum Zitat Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37(2):183–233MATHCrossRef Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37(2):183–233MATHCrossRef
22.
Zurück zum Zitat Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: International conference on learning representations Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: International conference on learning representations
23.
Zurück zum Zitat Lin K, Li D, He X, Zhang Z, Sun MT (2017) Adversarial ranking for language generation. In: Advances in neural information processing systems, pp 3155–3165 Lin K, Li D, He X, Zhang Z, Sun MT (2017) Adversarial ranking for language generation. In: Advances in neural information processing systems, pp 3155–3165
24.
Zurück zum Zitat Liu Q, Lee J, Jordan M (2016) A kernelized Stein discrepancy for goodness-of-fit tests. In: International conference on machine learning, pp 276–284 Liu Q, Lee J, Jordan M (2016) A kernelized Stein discrepancy for goodness-of-fit tests. In: International conference on machine learning, pp 276–284
25.
Zurück zum Zitat Liu Q, Wang D (2016) Stein variational gradient descent: a general purpose Bayesian inference algorithm. In: Advances in neural information processing systems, pp 2378–2386 Liu Q, Wang D (2016) Stein variational gradient descent: a general purpose Bayesian inference algorithm. In: Advances in neural information processing systems, pp 2378–2386
26.
Zurück zum Zitat Neal RM et al (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo 2(11):2MATH Neal RM et al (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo 2(11):2MATH
27.
Zurück zum Zitat Oberai AA, Gokhale NH, Feijóo GR (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl 19(2):297MathSciNetMATHCrossRef Oberai AA, Gokhale NH, Feijóo GR (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl 19(2):297MathSciNetMATHCrossRef
28.
Zurück zum Zitat Oliver DS, Reynolds AC, Liu N (2008) Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, CambridgeCrossRef Oliver DS, Reynolds AC, Liu N (2008) Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, CambridgeCrossRef
29.
Zurück zum Zitat Opper M, Saad D (2001) Advanced mean field methods: theory and practice. MIT Press, CambridgeMATHCrossRef Opper M, Saad D (2001) Advanced mean field methods: theory and practice. MIT Press, CambridgeMATHCrossRef
30.
Zurück zum Zitat Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: International conference on learning representations Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: International conference on learning representations
31.
Zurück zum Zitat Rezende DJ, Mohamed S, Wierstra D (2014) Stochastic backpropagation and approximate inference in deep generative models. In: ICML Rezende DJ, Mohamed S, Wierstra D (2014) Stochastic backpropagation and approximate inference in deep generative models. In: ICML
32.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
33.
Zurück zum Zitat Sato MA (2001) Online model selection based on the variational Bayes. Neural Comput 13(7):1649–1681MATHCrossRef Sato MA (2001) Online model selection based on the variational Bayes. Neural Comput 13(7):1649–1681MATHCrossRef
34.
Zurück zum Zitat Sei A, Symes WW (1994) Gradient calculation of the traveltime cost function without ray tracing. In: SEG technical program expanded abstracts, 1994. Society of Exploration Geophysicists, pp 1351–1354 Sei A, Symes WW (1994) Gradient calculation of the traveltime cost function without ray tracing. In: SEG technical program expanded abstracts, 1994. Society of Exploration Geophysicists, pp 1351–1354
35.
Zurück zum Zitat Sriperumbudur BK, Gretton A, Fukumizu K, Schölkopf B, Lanckriet GR (2010) Hilbert space embeddings and metrics on probability measures. J Mach Learn Res 11(Apr):1517–1561MathSciNetMATH Sriperumbudur BK, Gretton A, Fukumizu K, Schölkopf B, Lanckriet GR (2010) Hilbert space embeddings and metrics on probability measures. J Mach Learn Res 11(Apr):1517–1561MathSciNetMATH
36.
Zurück zum Zitat Stein C et al (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the 6th Berkeley symposium on mathematical statistics and probability: probability theory, vol 2. The Regents of the University of California Stein C et al (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the 6th Berkeley symposium on mathematical statistics and probability: probability theory, vol 2. The Regents of the University of California
37.
Zurück zum Zitat Wang D, Liu Q (2016) Learning to draw samples: with application to amortized MLE for generative adversarial learning. arXiv preprint arXiv:1611.01722 Wang D, Liu Q (2016) Learning to draw samples: with application to amortized MLE for generative adversarial learning. arXiv preprint arXiv:​1611.​01722
38.
Zurück zum Zitat Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2018) AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 1316–1324 Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2018) AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 1316–1324
39.
Zurück zum Zitat Yu L, Zhang W, Wang J, Yu Y (2017) Seqgan: sequence generative adversarial nets with policy gradient Yu L, Zhang W, Wang J, Yu Y (2017) Seqgan: sequence generative adversarial nets with policy gradient
Metadaten
Titel
Solving Bayesian inverse problems from the perspective of deep generative networks
verfasst von
Thomas Y. Hou
Ka Chun Lam
Pengchuan Zhang
Shumao Zhang
Publikationsdatum
19.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01739-7

Weitere Artikel der Ausgabe 2/2019

Computational Mechanics 2/2019 Zur Ausgabe

Neuer Inhalt