Skip to main content
Erschienen in: Computational Mechanics 2/2019

17.04.2019 | Original Paper

Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures

verfasst von: Guorong Chen, Tiange Li, Qijun Chen, Shaofei Ren, Chao Wang, Shaofan Li

Erschienen in: Computational Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we have developed a novel deep learning inverse solution or identification method to determine and identify the impact load conditions of shell structures based on their final state of damage or inelastic deformation. This artificial intelligence approach offers a practical solution to solve the inverse problem of engineering failure analysis based on final material and structure damage state and permanent plastic deformation. More precisely, the machine learning inverse problem solver may provide a practical solution to characterize failure load parameters and conditions based on the final permanent plastic deformation distribution of the shell structure that is under examination. In this work, we have demonstrated that the proposed deep learning method can accurately identify a “practically unique” static loading condition as well as the impact dynamic loading condition for a hemispherical shell structure based the permanent plastic deformation after the impact event as the forensic signatures. The data-driven based method developed in this work may provide a powerful tool for forensically diagnosing, determining, and identifying damage loading conditions for engineering structures in various accidental failure events, such as car crashes, pressure vessel failure, or thin-walled infrastructure structure collapses. The machine learning inverse problem solver developed here in this work may have potential impacts on general forensic material and structure failure analysis based on final permanent plastic deformations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ren S, Chen G, Li T, Chen Q, Li S (2018) A deep learning-based computational algorithm for identifying damage load condition: an artificial intelligence inverse problem solution for failure analysis. Comput. Model. Eng. Sci. 117(3):287–307 Ren S, Chen G, Li T, Chen Q, Li S (2018) A deep learning-based computational algorithm for identifying damage load condition: an artificial intelligence inverse problem solution for failure analysis. Comput. Model. Eng. Sci. 117(3):287–307
2.
Zurück zum Zitat Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47CrossRef Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47CrossRef
3.
Zurück zum Zitat Bratko A, Cormack GV, Filipia B, Lynam TR, Zupan B (2006) Spam filtering using statistical data compression models. J Mach Learn Res 7:2673–2698MathSciNetMATH Bratko A, Cormack GV, Filipia B, Lynam TR, Zupan B (2006) Spam filtering using statistical data compression models. J Mach Learn Res 7:2673–2698MathSciNetMATH
4.
Zurück zum Zitat Sajda P (2006) Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 8:537–565CrossRef Sajda P (2006) Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 8:537–565CrossRef
5.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2001) The elements ofstatistical learning, vol 1. Springer, New YorkMATH Friedman J, Hastie T, Tibshirani R (2001) The elements ofstatistical learning, vol 1. Springer, New YorkMATH
6.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
7.
Zurück zum Zitat Jones A, Keatley AC, Goulermas JY, Scott TB, Turner P, Awbery R, Stapleton M (2018) Machine learning techniques to repurpose Uranium Ore Concentrate (UOC) industrial records and their application to nuclear forensic investigation. Appl Geochem 91:221–227CrossRef Jones A, Keatley AC, Goulermas JY, Scott TB, Turner P, Awbery R, Stapleton M (2018) Machine learning techniques to repurpose Uranium Ore Concentrate (UOC) industrial records and their application to nuclear forensic investigation. Appl Geochem 91:221–227CrossRef
8.
Zurück zum Zitat Mena J (2016) Machine learning forensics for law enforcement, security, and intelligence. Auerbach Publications, Boca RatonCrossRef Mena J (2016) Machine learning forensics for law enforcement, security, and intelligence. Auerbach Publications, Boca RatonCrossRef
9.
Zurück zum Zitat Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011004CrossRef Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011004CrossRef
10.
Zurück zum Zitat Zheng X, Zheng P, Zhang RZ (2018) Machine learning material properties from the periodic table using convolutional neural networks. Chem Sci 9(44):8426–8432CrossRef Zheng X, Zheng P, Zhang RZ (2018) Machine learning material properties from the periodic table using convolutional neural networks. Chem Sci 9(44):8426–8432CrossRef
11.
Zurück zum Zitat Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113(11):1697–1710MathSciNetCrossRef Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113(11):1697–1710MathSciNetCrossRef
12.
Zurück zum Zitat Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M (2018) Data-driven multi-scale multi-physics models to derive process “structure” property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M (2018) Data-driven multi-scale multi-physics models to derive process “structure” property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef
13.
Zurück zum Zitat Bostanabad R, Kearney T, Tao S, Apley DW, Chen W (2018) Leveraging the nugget parameter for efficient Gaussian process modeling. Int J Numer Methods Eng 114(5):501–516MathSciNetCrossRef Bostanabad R, Kearney T, Tao S, Apley DW, Chen W (2018) Leveraging the nugget parameter for efficient Gaussian process modeling. Int J Numer Methods Eng 114(5):501–516MathSciNetCrossRef
14.
Zurück zum Zitat James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New York, p 18MATHCrossRef James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New York, p 18MATHCrossRef
18.
Zurück zum Zitat Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Review 65(6):386CrossRef Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Review 65(6):386CrossRef
19.
Zurück zum Zitat Grossberg SE (1988) Neural networks and natural intelligence. MIT Press, CambridgeMATH Grossberg SE (1988) Neural networks and natural intelligence. MIT Press, CambridgeMATH
20.
Zurück zum Zitat Kerlirzin P, Vallet F (1993) Robustness in multilayer perceptrons. Neural Comput 5(3):473–482CrossRef Kerlirzin P, Vallet F (1993) Robustness in multilayer perceptrons. Neural Comput 5(3):473–482CrossRef
21.
Zurück zum Zitat Haykin S (1994) Neural networks, vol 2. Prentice hall, New YorkMATH Haykin S (1994) Neural networks, vol 2. Prentice hall, New YorkMATH
22.
23.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
24.
Zurück zum Zitat Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192CrossRef Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192CrossRef
25.
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATHCrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATHCrossRef
26.
Zurück zum Zitat Bianchini M, Scarselli F (2014) On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Trans Neural Netw Learn Syst 25(8):1553–1565CrossRef Bianchini M, Scarselli F (2014) On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Trans Neural Netw Learn Syst 25(8):1553–1565CrossRef
27.
Zurück zum Zitat Gao Y, Mosalam KM (2018) Deep transfer learning for image—based structural damage recognition. Comput Aided Civ Infrastruct Eng 33(9):748–768CrossRef Gao Y, Mosalam KM (2018) Deep transfer learning for image—based structural damage recognition. Comput Aided Civ Infrastruct Eng 33(9):748–768CrossRef
28.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
30.
Zurück zum Zitat Hibbitt H, Karlsson B, Sorensen P (2011) Abaqus analysis user’s manual version 6.10. Dassault Systmes Simulia Corp., Providence Hibbitt H, Karlsson B, Sorensen P (2011) Abaqus analysis user’s manual version 6.10. Dassault Systmes Simulia Corp., Providence
31.
Zurück zum Zitat Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155:1350–1356CrossRef Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155:1350–1356CrossRef
32.
Zurück zum Zitat Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef
Metadaten
Titel
Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures
verfasst von
Guorong Chen
Tiange Li
Qijun Chen
Shaofei Ren
Chao Wang
Shaofan Li
Publikationsdatum
17.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01706-2

Weitere Artikel der Ausgabe 2/2019

Computational Mechanics 2/2019 Zur Ausgabe

Neuer Inhalt