Skip to main content
Erschienen in: Computational Mechanics 2/2019

12.04.2019 | Original Paper

Transfer learning of deep material network for seamless structure–property predictions

verfasst von: Zeliang Liu, C. T. Wu, M. Koishi

Erschienen in: Computational Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern materials design requires reliable and consistent structure–property relationships. The paper addresses the need through transfer learning of deep material network (DMN). In the proposed learning strategy, we store the knowledge of a pre-trained network and reuse it to generate the initial structure for a new material via a naive approach. Significant improvements in the training accuracy and learning convergence are attained. Since all the databases share the same base network structure, their fitting parameters can be interpolated to seamlessly create intermediate databases. The new transferred models are shown to outperform the analytical micromechanics methods in predicting the volume fraction effects. We then apply the unified DMN databases to the design of failure properties, where the failure criteria are defined upon the distribution of microscale plastic strains. The Pareto frontier of toughness and ultimate tensile strength is extracted from a large-scale design space enabled by the efficiency of DMN extrapolation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242CrossRef Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242CrossRef
2.
Zurück zum Zitat Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1):4–25CrossRef Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1):4–25CrossRef
3.
Zurück zum Zitat McVeigh C, Vernerey F, Liu WK, Brinson LC (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195(37):5053–5076MathSciNetMATHCrossRef McVeigh C, Vernerey F, Liu WK, Brinson LC (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195(37):5053–5076MathSciNetMATHCrossRef
4.
Zurück zum Zitat Buljac A, Jailin C, Mendoza A, Neggers J, Taillandier-Thomas T, Bouterf A, Smaniotto B, Hild F, Roux S (2018) Digital volume correlation: review of progress and challenges. Exp Mech 58(5):661–708CrossRef Buljac A, Jailin C, Mendoza A, Neggers J, Taillandier-Thomas T, Bouterf A, Smaniotto B, Hild F, Roux S (2018) Digital volume correlation: review of progress and challenges. Exp Mech 58(5):661–708CrossRef
5.
6.
Zurück zum Zitat Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SIC/TI composite materials. Comput Methods Appl Mech Eng 183(3):309–330MATHCrossRef Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SIC/TI composite materials. Comput Methods Appl Mech Eng 183(3):309–330MATHCrossRef
7.
Zurück zum Zitat Wu CT, Koishi M (2012) Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites. Int J Numer Methods Eng 91(11):1137–1157MathSciNetCrossRef Wu CT, Koishi M (2012) Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites. Int J Numer Methods Eng 91(11):1137–1157MathSciNetCrossRef
8.
Zurück zum Zitat Wu CT, Guo Y, Askari E (2013) Numerical modeling of composite solids using an immersed meshfree Galerkin method. Compos Part B Eng 45(1):1397–1413CrossRef Wu CT, Guo Y, Askari E (2013) Numerical modeling of composite solids using an immersed meshfree Galerkin method. Compos Part B Eng 45(1):1397–1413CrossRef
9.
Zurück zum Zitat Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetMATHCrossRef Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetMATHCrossRef
10.
Zurück zum Zitat De Geus T, Vondřejc J, Zeman J, Peerlings R, Geers M (2017) Finite strain FFT-based non-linear solvers made simple. Comput Methods Appl Mech Eng 318:412–430MathSciNetCrossRef De Geus T, Vondřejc J, Zeman J, Peerlings R, Geers M (2017) Finite strain FFT-based non-linear solvers made simple. Comput Methods Appl Mech Eng 318:412–430MathSciNetCrossRef
11.
Zurück zum Zitat Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225CrossRef Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225CrossRef
12.
Zurück zum Zitat Yang Z, Yabansu YC, Al-Bahrani R, Liao Wk, Choudhary AN, Kalidindi SR, Agrawal A (2018) Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput Mater Sci 151:278–287CrossRef Yang Z, Yabansu YC, Al-Bahrani R, Liao Wk, Choudhary AN, Kalidindi SR, Agrawal A (2018) Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput Mater Sci 151:278–287CrossRef
13.
Zurück zum Zitat Bessa M, Bostanabad R, Liu Z, Hu A, Apley D, Brinson C, Chen W, Liu W (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Computer Methods Appl Mech Eng 320:633–667MathSciNetCrossRef Bessa M, Bostanabad R, Liu Z, Hu A, Apley D, Brinson C, Chen W, Liu W (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Computer Methods Appl Mech Eng 320:633–667MathSciNetCrossRef
14.
Zurück zum Zitat Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141MathSciNetMATHCrossRef Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141MathSciNetMATHCrossRef
15.
Zurück zum Zitat Chen Z, Huang T, Shao Y, Li Y, Xu H, Avery K, Zeng D, Chen W, Su X (2018) Multiscale finite element modeling of sheet molding compound (smc) composite structure based on stochastic mesostructure reconstruction. Compos Struct 188:25–38CrossRef Chen Z, Huang T, Shao Y, Li Y, Xu H, Avery K, Zeng D, Chen W, Su X (2018) Multiscale finite element modeling of sheet molding compound (smc) composite structure based on stochastic mesostructure reconstruction. Compos Struct 188:25–38CrossRef
16.
Zurück zum Zitat Oliver J, Caicedo M, Huespe A, Hernández J, Roubin E (2017) Reduced order modeling strategies for computational multiscale fracture. Computer Methods Appl Mech Eng 313:560–595MathSciNetCrossRef Oliver J, Caicedo M, Huespe A, Hernández J, Roubin E (2017) Reduced order modeling strategies for computational multiscale fracture. Computer Methods Appl Mech Eng 313:560–595MathSciNetCrossRef
17.
Zurück zum Zitat Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data. Elsevier, Amsterdam Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data. Elsevier, Amsterdam
18.
Zurück zum Zitat Latypov MI, Toth LS, Kalidindi SR (2019) Materials knowledge system for nonlinear composites. Computer Methods Appl Mech Eng 346:180–196MathSciNetCrossRef Latypov MI, Toth LS, Kalidindi SR (2019) Materials knowledge system for nonlinear composites. Computer Methods Appl Mech Eng 346:180–196MathSciNetCrossRef
19.
Zurück zum Zitat Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Computer Methods Appl Mech Eng 306:319–341MathSciNetCrossRef Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Computer Methods Appl Mech Eng 306:319–341MathSciNetCrossRef
20.
Zurück zum Zitat Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Computer Methods Appl Mech Eng 330:547–577MathSciNetCrossRef Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Computer Methods Appl Mech Eng 330:547–577MathSciNetCrossRef
21.
Zurück zum Zitat Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Advances in computational plasticity. Springer, pp 221–242 Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Advances in computational plasticity. Springer, pp 221–242
22.
Zurück zum Zitat Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering analysis for multiscale modeling at finite strains. Computer Methods Appl Mech Eng 349:339–359MathSciNetCrossRef Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering analysis for multiscale modeling at finite strains. Computer Methods Appl Mech Eng 349:339–359MathSciNetCrossRef
23.
Zurück zum Zitat Liu Z, Wu C, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Computer Methods Appl Mech Eng 345:1138–1168MathSciNetCrossRef Liu Z, Wu C, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Computer Methods Appl Mech Eng 345:1138–1168MathSciNetCrossRef
24.
Zurück zum Zitat Liu Z, Wu C (2019) Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids 127:20–46MathSciNetCrossRef Liu Z, Wu C (2019) Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids 127:20–46MathSciNetCrossRef
25.
Zurück zum Zitat Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in neural information processing systems, pp 640–646 Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in neural information processing systems, pp 640–646
26.
Zurück zum Zitat Raina R, Ng AY, Koller D (2006) Constructing informative priors using transfer learning. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 713–720 Raina R, Ng AY, Koller D (2006) Constructing informative priors using transfer learning. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 713–720
27.
Zurück zum Zitat Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E 96(5):052111CrossRef Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E 96(5):052111CrossRef
28.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
29.
Zurück zum Zitat Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018) A transfer learning approach for microstructure reconstruction and structure–property predictions. Sci Rep 8(1):13461CrossRef Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018) A transfer learning approach for microstructure reconstruction and structure–property predictions. Sci Rep 8(1):13461CrossRef
30.
Zurück zum Zitat Melro A, Camanho P, Pinho S (2008) Generation of random distribution of fibres in long-fibre reinforced composites. Compos Sci Technol 68(9):2092–2102CrossRef Melro A, Camanho P, Pinho S (2008) Generation of random distribution of fibres in long-fibre reinforced composites. Compos Sci Technol 68(9):2092–2102CrossRef
31.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef
32.
33.
Zurück zum Zitat Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241(1226):376–396MathSciNetMATHCrossRef Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241(1226):376–396MathSciNetMATHCrossRef
34.
Zurück zum Zitat Christensen R, Lo K (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330MATHCrossRef Christensen R, Lo K (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330MATHCrossRef
Metadaten
Titel
Transfer learning of deep material network for seamless structure–property predictions
verfasst von
Zeliang Liu
C. T. Wu
M. Koishi
Publikationsdatum
12.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01704-4

Weitere Artikel der Ausgabe 2/2019

Computational Mechanics 2/2019 Zur Ausgabe

Neuer Inhalt