Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2010

01.11.2010

Spatial Modulation and Filtering of Diffusion Patterns for Inverse Analysis of Heat Deposition

verfasst von: S. G. Lambrakos

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

General parameterizations are constructed for spatial modulation and filtering of heat diffusion patterns according to general energy deposition characteristics occurring within a volume of material resulting from a volumetrically coupled energy source. These parameterizations include previously constructed models of energy deposition as special cases. The construction of a general parameterization of energy deposition processes is necessary for their inverse analysis. The structure of such a parameterization follows from the concepts of model and data spaces that imply the existence of an optimal parametric representation for a given class of inverse problems. Accordingly, the optimal parametric representation is determined by the characteristics of the available data, which in principle can contain both experimental measurements and numerical simulation data. Parameterizations for spatial modulation and filtering of heat diffusion follow from the observation that many different types of energy deposition processes can be represented by weighted sums of basis functions whose general forms are that of spatially modulated or filtered diffusion. A significant aspect of the parameterizations presented is that the definition of the inverse heat deposition problem, which is adopted for their construction, provides a rigorous foundation for a highly flexible and general parameterization of energy deposition processes, which is essential for their inverse analysis. A preliminary proof is presented that shows the significance of these parameterizations for the application of similarity transformations to the inverse analysis of energy deposition processes. The applicability of similarity transforms to the inverse analysis of heat deposition is another property that follows from the specific definition of the inverse heat deposition problem considered here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.N. Ghosh Roy, Methods of Inverse Problems in Physics, CRC Press, Boca Raton, 1991 D.N. Ghosh Roy, Methods of Inverse Problems in Physics, CRC Press, Boca Raton, 1991
2.
Zurück zum Zitat K.A. Woodbury, Ed., Inverse Engineering Handbook, CRC Press, New York, 2003MATH K.A. Woodbury, Ed., Inverse Engineering Handbook, CRC Press, New York, 2003MATH
3.
Zurück zum Zitat A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA, 2005MATH A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA, 2005MATH
4.
Zurück zum Zitat C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002MATH C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002MATH
5.
Zurück zum Zitat P.C. Sabatier, Ed., Inverse Problems: An Interdisciplinary Study, Academic Press, London, 1987 P.C. Sabatier, Ed., Inverse Problems: An Interdisciplinary Study, Academic Press, London, 1987
6.
Zurück zum Zitat C.W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Bruanschweig, Wiesbaden, 1993MATH C.W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Bruanschweig, Wiesbaden, 1993MATH
7.
Zurück zum Zitat A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996MATH A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996MATH
8.
Zurück zum Zitat A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005, p 9–10MATH A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005, p 9–10MATH
9.
Zurück zum Zitat I.J.D. Craig and J.C. Brown, Inverse Problems in Astronomy, A Guide to Inversion Strategies for Remotely Sensed Data, Adam Hilger Ltd, Bristol and Boston, 1986MATH I.J.D. Craig and J.C. Brown, Inverse Problems in Astronomy, A Guide to Inversion Strategies for Remotely Sensed Data, Adam Hilger Ltd, Bristol and Boston, 1986MATH
10.
Zurück zum Zitat M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000 M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000
11.
Zurück zum Zitat K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995MATH K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995MATH
12.
Zurück zum Zitat O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994MATH O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994MATH
13.
Zurück zum Zitat J.V. Beck, B. Blackwell, and C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985MATH J.V. Beck, B. Blackwell, and C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985MATH
14.
Zurück zum Zitat J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427–437 J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427–437
15.
Zurück zum Zitat J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24 J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24
16.
Zurück zum Zitat N. Zabaras, Inverse Modeling of Solidification and Welding Processes, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 523–530 N. Zabaras, Inverse Modeling of Solidification and Welding Processes, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 523–530
17.
Zurück zum Zitat G.S. Dulikravich and T.J. Martin, Inverse Shape and Boundary Condition Problems and Optimization, Heat Conduction: Advances in Numerical Heat Transfer, Vol 1, Chap. 10, W.J. Minkowycz and E.M. Sparrow, Ed., Taylor & Francis, London, 1996, p 381–426 G.S. Dulikravich and T.J. Martin, Inverse Shape and Boundary Condition Problems and Optimization, Heat Conduction: Advances in Numerical Heat Transfer, Vol 1, Chap. 10, W.J. Minkowycz and E.M. Sparrow, Ed., Taylor & Francis, London, 1996, p 381–426
18.
Zurück zum Zitat T.J. Martin and G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transfer, 1996, 118, p 546–554CrossRef T.J. Martin and G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transfer, 1996, 118, p 546–554CrossRef
20.
Zurück zum Zitat S.G. Lambrakos and J.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 847 S.G. Lambrakos and J.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 847
21.
Zurück zum Zitat S.G. Lambrakos and J.G. Michopoulos, Computational Parameterization Simplicity and Filtering of Data-Driven Inverse Analysis for Heat Deposition Processes, Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept 10–13, 2006, Philadelphia, PA S.G. Lambrakos and J.G. Michopoulos, Computational Parameterization Simplicity and Filtering of Data-Driven Inverse Analysis for Heat Deposition Processes, Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept 10–13, 2006, Philadelphia, PA
22.
Zurück zum Zitat S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes Using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Austria, 2005, p 1025–1055 S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes Using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Austria, 2005, p 1025–1055
23.
Zurück zum Zitat P.G. Moore, H.N. Jones III, and S.G. Lambrakos, An inverse Heat Transfer Model of Thermal Degradation Within Multifunctional Tensioned Cable Structures, J. Mater. Eng. Perform., 14(1), Feb 2005 P.G. Moore, H.N. Jones III, and S.G. Lambrakos, An inverse Heat Transfer Model of Thermal Degradation Within Multifunctional Tensioned Cable Structures, J. Mater. Eng. Perform., 14(1), Feb 2005
24.
Zurück zum Zitat S.G. Lambrakos and J.O. Milewski, Analysis of Processes Involving Heat Deposition Using Constrained Optimization, Sci. Technol. Weld. Join., 2002, 7(3), p 137CrossRef S.G. Lambrakos and J.O. Milewski, Analysis of Processes Involving Heat Deposition Using Constrained Optimization, Sci. Technol. Weld. Join., 2002, 7(3), p 137CrossRef
25.
Zurück zum Zitat S.G. Lambrakos and D.W. Moon, Analysis of Welds Using Geometric Constraints, Computer-Aided Design, Engineering, and Manufacturing, Systems Techniques and Applications, C. Leondes, Ed., CRC Press, New York, 2001 S.G. Lambrakos and D.W. Moon, Analysis of Welds Using Geometric Constraints, Computer-Aided Design, Engineering, and Manufacturing, Systems Techniques and Applications, C. Leondes, Ed., CRC Press, New York, 2001
26.
Zurück zum Zitat S.G. Lambrakos, E.A. Metzbower, J.O. Milewski, G. Lewis, R. Dixon, and D. Korzekwa, Simulation of Deep Penetration Welding Processes Using Geometric Constraints Based on Experimental Information, J. Mater. Eng. Perform., 1994, 3(5), p 639CrossRef S.G. Lambrakos, E.A. Metzbower, J.O. Milewski, G. Lewis, R. Dixon, and D. Korzekwa, Simulation of Deep Penetration Welding Processes Using Geometric Constraints Based on Experimental Information, J. Mater. Eng. Perform., 1994, 3(5), p 639CrossRef
27.
Zurück zum Zitat K.P. Cooper and S.G. Lambrakos, Fabrication of Net-Shaped Metallic Parts by Overlapping Reinforcement Weld Beads, Proceedings of the Seventh International Conference on Trends in Welding Research, May 16–20 (Pine Mountain, GA), ASM International, Materials Park, OH, 2005, p 647 K.P. Cooper and S.G. Lambrakos, Fabrication of Net-Shaped Metallic Parts by Overlapping Reinforcement Weld Beads, Proceedings of the Seventh International Conference on Trends in Welding Research, May 16–20 (Pine Mountain, GA), ASM International, Materials Park, OH, 2005, p 647
28.
Zurück zum Zitat E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Austria, 2005, p 327–339 E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Austria, 2005, p 327–339
29.
Zurück zum Zitat S.G. Lambrakos, R.W. Fonda, J.O. Milewski, and J.E. Mitchell, Analysis of Friction Stir Welds Using Thermocouple Measurements, Sci. Technol. Weld. Join., 2003, 8, p 345CrossRef S.G. Lambrakos, R.W. Fonda, J.O. Milewski, and J.E. Mitchell, Analysis of Friction Stir Welds Using Thermocouple Measurements, Sci. Technol. Weld. Join., 2003, 8, p 345CrossRef
30.
Zurück zum Zitat R.W. Fonda and S.G. Lambrakos, Analysis of Friction Stir Welds Using an Inverse Problem Approach, Sci. Technol. Weld. Join., 2002, 7(3), p 177CrossRef R.W. Fonda and S.G. Lambrakos, Analysis of Friction Stir Welds Using an Inverse Problem Approach, Sci. Technol. Weld. Join., 2002, 7(3), p 177CrossRef
31.
Zurück zum Zitat J. Hadamard, ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin, 1902, p 49-52 J. Hadamard, ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin, 1902, p 49-52
32.
Zurück zum Zitat Proceedings International Conferences on Trends in Welding Research, Vol 1–7, ASM International, Materials Park, OH Proceedings International Conferences on Trends in Welding Research, Vol 1–7, ASM International, Materials Park, OH
33.
Zurück zum Zitat Mathematical Modelling of Weld Phenomena, Vol 1–8, Verlag der Technischen Universite Graz, Austria Mathematical Modelling of Weld Phenomena, Vol 1–8, Verlag der Technischen Universite Graz, Austria
34.
Zurück zum Zitat J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer Science+Business Media, Inc., 2005 J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer Science+Business Media, Inc., 2005
35.
Zurück zum Zitat J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef
36.
Zurück zum Zitat J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel, Computer Modeling of Heat Flow in Welds, Metall. Trans. B, 1986, 17, p 587–600CrossRef J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel, Computer Modeling of Heat Flow in Welds, Metall. Trans. B, 1986, 17, p 587–600CrossRef
37.
Zurück zum Zitat R.N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill Book Company, New York, 1986, p 345–355 R.N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill Book Company, New York, 1986, p 345–355
38.
Zurück zum Zitat V.A. Karkhin, V.V. Plochikhine, A.S. Ilyin, and H.W. Bergmann, Inverse Modelling of Fusion Welding Process, Mathematical Modelling of Weld Phenomena 6, H. Cerjak, Ed., Maney Publishing, London, 2002, p 1017–1042 V.A. Karkhin, V.V. Plochikhine, A.S. Ilyin, and H.W. Bergmann, Inverse Modelling of Fusion Welding Process, Mathematical Modelling of Weld Phenomena 6, H. Cerjak, Ed., Maney Publishing, London, 2002, p 1017–1042
39.
Zurück zum Zitat V.A. Karkhin, V.V. Plochikhine, and H.W. Bergmann, Solution of Inverse Heat Conduction Problem for Determining Heat Input, Weld Shape, and Grain Structure During Laser Welding, Sci. Technol. Weld. Join., 2002, 7(4), p 224–231CrossRef V.A. Karkhin, V.V. Plochikhine, and H.W. Bergmann, Solution of Inverse Heat Conduction Problem for Determining Heat Input, Weld Shape, and Grain Structure During Laser Welding, Sci. Technol. Weld. Join., 2002, 7(4), p 224–231CrossRef
40.
Zurück zum Zitat V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 847 V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 847
41.
Zurück zum Zitat V.A. Karkhin, V.G. Michailov, and V.D. Akatsevich, Modelling the Thermal Behaviour of Weld and Heat-Affected Zone During Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak, Ed., The University Press, Cambridge, 1998, p 411–426 V.A. Karkhin, V.G. Michailov, and V.D. Akatsevich, Modelling the Thermal Behaviour of Weld and Heat-Affected Zone During Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak, Ed., The University Press, Cambridge, 1998, p 411–426
42.
Zurück zum Zitat S. Kou, Welding Metallurgy, 2nd ed., Wiley-Interscience, New York, 2002 S. Kou, Welding Metallurgy, 2nd ed., Wiley-Interscience, New York, 2002
43.
Zurück zum Zitat E.A. Metzbower, Laser Beam Welding: Thermal Profiles and HAZ Hardness, Weld. J., 1990, 69(7), p 272 E.A. Metzbower, Laser Beam Welding: Thermal Profiles and HAZ Hardness, Weld. J., 1990, 69(7), p 272
44.
Zurück zum Zitat I. Tosello, F.X. Tissot, and M. Barras, Modelling of Weld Behaviour for the Control of the GTA Process by Computer Aided Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 80–103 I. Tosello, F.X. Tissot, and M. Barras, Modelling of Weld Behaviour for the Control of the GTA Process by Computer Aided Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 80–103
45.
Zurück zum Zitat R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model for Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model for Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef
46.
Zurück zum Zitat M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Inverse Modelling of Heat Generation in Friction Welding, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 881–890 M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Inverse Modelling of Heat Generation in Friction Welding, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Austria, 2007, p 881–890
47.
Zurück zum Zitat N.N. Rykalin, Thermal Fundamentals of Welding, USSR Academy of Sciences, Moscow-Leningrad, 1947 N.N. Rykalin, Thermal Fundamentals of Welding, USSR Academy of Sciences, Moscow-Leningrad, 1947
48.
Zurück zum Zitat N.N. Rykalin, Calculation of Heat Flow in Welding, Z. Paley and C.M. Adams, Trans., 1951 N.N. Rykalin, Calculation of Heat Flow in Welding, Z. Paley and C.M. Adams, Trans., 1951
49.
Zurück zum Zitat N.N. Rykalin, Berchnung der Wdrmevorgange beim Schweissen, VEB, Ed., Verlag Technik, Berlin, 1957 N.N. Rykalin, Berchnung der Wdrmevorgange beim Schweissen, VEB, Ed., Verlag Technik, Berlin, 1957
50.
Zurück zum Zitat N.N. Rykalin, Energy Sources for Welding, Weld. World, 1974, 12(9/10), p 227–248 N.N. Rykalin, Energy Sources for Welding, Weld. World, 1974, 12(9/10), p 227–248
51.
Zurück zum Zitat P.N. Sabapathy, M.A. Wahab, and M.J. Painter, Numerical Methods to Predict Failure During the In-Service Welding of Gas Pipelines, J. Strain Anal., 2001, 36(6), p 611–619CrossRef P.N. Sabapathy, M.A. Wahab, and M.J. Painter, Numerical Methods to Predict Failure During the In-Service Welding of Gas Pipelines, J. Strain Anal., 2001, 36(6), p 611–619CrossRef
52.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Evaluation of the Thermal Cycle in the HAZ During Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 379–395 E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Evaluation of the Thermal Cycle in the HAZ During Welding, Mathematical Modelling of Weld Phenomena 4, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 379–395
53.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Estimation of the Thermal Cycle During Welding with Various Heat Source Models Application, Mathematical Modelling of Weld Phenomena 5, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 723–742 E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Estimation of the Thermal Cycle During Welding with Various Heat Source Models Application, Mathematical Modelling of Weld Phenomena 5, H. Cerjak and H.K.D.H. Bhadeshia, Ed., IOM Communications Ltd, London, 1998, p 723–742
54.
Zurück zum Zitat E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Assessment of the Thermal Cycle in HAZ with Three Dimensional Heat Source Models and Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 7, H. Cerjak, H.K.D.H. Bhadeshia, and E. Kozeschnik, Ed., Verlag der Technischen Universite Graz, Austria, 2001, p 1111–1128 E. Ranatowski and A. Pocwiardowski, An Analytical-Numerical Assessment of the Thermal Cycle in HAZ with Three Dimensional Heat Source Models and Pulsed Power Welding, Mathematical Modelling of Weld Phenomena 7, H. Cerjak, H.K.D.H. Bhadeshia, and E. Kozeschnik, Ed., Verlag der Technischen Universite Graz, Austria, 2001, p 1111–1128
55.
Zurück zum Zitat D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866 D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866
56.
Zurück zum Zitat D. Rosenthal, Weld. J., 1941, 20, p 220s–241s D. Rosenthal, Weld. J., 1941, 20, p 220s–241s
57.
Zurück zum Zitat D. Rosenthal, Etude theoretic du regime thermique pendant la soudure a l’arc, 2ieme Congress National des Sciences, Brussels, 1935, p 1277–1292 D. Rosenthal, Etude theoretic du regime thermique pendant la soudure a l’arc, 2ieme Congress National des Sciences, Brussels, 1935, p 1277–1292
58.
Zurück zum Zitat O. Grong, Metallurgical Modelling of Welding, 2nd ed., Chap 2, Materials Modelling Series, H.K.D.H. Bhadeshia, Ed., The Institute of Materials, UK, 1997, p 1–115 O. Grong, Metallurgical Modelling of Welding, 2nd ed., Chap 2, Materials Modelling Series, H.K.D.H. Bhadeshia, Ed., The Institute of Materials, UK, 1997, p 1–115
59.
Zurück zum Zitat H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374 H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374
Metadaten
Titel
Spatial Modulation and Filtering of Diffusion Patterns for Inverse Analysis of Heat Deposition
verfasst von
S. G. Lambrakos
Publikationsdatum
01.11.2010
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2010
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-009-9592-6

Weitere Artikel der Ausgabe 8/2010

Journal of Materials Engineering and Performance 8/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.