Skip to main content

2017 | Supplement | Buchkapitel

5. Special Studies and Characterization of CNT Dispersions

verfasst von : Oxana Vasilievna Kharissova, Boris Ildusovich Kharisov

Erschienen in: Solubilization and Dispersion of Carbon Nanotubes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During more than 20-year period of investigations in the field of carbon nanotubes and their dispersions in water and organic solvents, a series of important observations, effects, and conclusions have been made, in particular after the CNT dispersions have been studied within solution. As it will be seen below, influence of solvent and external influence (i.e., UV light or the presence of ions), free radicals, and a row of other factors can improve or affect the CNT dispersibility, which could differ depending on CNT type and their purity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Li, J.C. Nie, S. Kunsági-Máte, Modified dispersion of functionalized multi-walled carbon nanotubes in acetonitrile. Chem. Phys. Lett. 492(4–6), 258–262 (2010)CrossRef H. Li, J.C. Nie, S. Kunsági-Máte, Modified dispersion of functionalized multi-walled carbon nanotubes in acetonitrile. Chem. Phys. Lett. 492(4–6), 258–262 (2010)CrossRef
2.
Zurück zum Zitat J. Wang, D. Früchtl, Z. Sun, J.N. Coleman, W.J. Blau, Control of optical limiting of carbon nanotube dispersions by changing solvent parameters. J. Phys. Chem. C 114(13), 6148–6156 (2010)CrossRef J. Wang, D. Früchtl, Z. Sun, J.N. Coleman, W.J. Blau, Control of optical limiting of carbon nanotube dispersions by changing solvent parameters. J. Phys. Chem. C 114(13), 6148–6156 (2010)CrossRef
3.
Zurück zum Zitat G. Sun, Z. Liu, G. Chen, Dispersion of pristine multi-walled carbon nanotubes in common organic solvents. Nano 5(2), 103–109 (2010)CrossRef G. Sun, Z. Liu, G. Chen, Dispersion of pristine multi-walled carbon nanotubes in common organic solvents. Nano 5(2), 103–109 (2010)CrossRef
4.
Zurück zum Zitat M. Ghislandi, E. Tkalya, S. Schillinger, C.E. Koning, G. De With, High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. Compos. Sci. Technol. 80, 16–22 (2013)CrossRef M. Ghislandi, E. Tkalya, S. Schillinger, C.E. Koning, G. De With, High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. Compos. Sci. Technol. 80, 16–22 (2013)CrossRef
5.
Zurück zum Zitat S.D.F. Brandão, D. Andrada, A.F. Mesquita, A.P. Santos, H.F. Gorgulho, R. Paniago, M.A. Pimenta, C. Fantini, C.A. Furtado, The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. J. Phys. Condens. Matter 22(33.), art. no), 334222 (2010)CrossRef S.D.F. Brandão, D. Andrada, A.F. Mesquita, A.P. Santos, H.F. Gorgulho, R. Paniago, M.A. Pimenta, C. Fantini, C.A. Furtado, The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. J. Phys. Condens. Matter 22(33.), art. no), 334222 (2010)CrossRef
6.
Zurück zum Zitat M.W. Forney, J.C. Poler, Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems. J. Phys. Chem. C 115(21), 10531–10536 (2011)CrossRef M.W. Forney, J.C. Poler, Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems. J. Phys. Chem. C 115(21), 10531–10536 (2011)CrossRef
7.
Zurück zum Zitat P.-C. Ma, N.A. Siddiqui, E. Mäder, J.-K. Kim, Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes. Compos. Sci. Technol. 71(14), 1644–1651 (2011)CrossRef P.-C. Ma, N.A. Siddiqui, E. Mäder, J.-K. Kim, Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes. Compos. Sci. Technol. 71(14), 1644–1651 (2011)CrossRef
8.
Zurück zum Zitat Q. Cheng, S. Debnath, L. O’Neill, T.G. Hedderman, E. Gregan, H.J. Byrne, Systematic study of the dispersion of SWCNTs in organic solvents. J. Phys. Chem. C 114(11), 4857–4863 (2010)CrossRef Q. Cheng, S. Debnath, L. O’Neill, T.G. Hedderman, E. Gregan, H.J. Byrne, Systematic study of the dispersion of SWCNTs in organic solvents. J. Phys. Chem. C 114(11), 4857–4863 (2010)CrossRef
9.
Zurück zum Zitat D.H. Kim, Y.S. Yun, H.-J. Jin, Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Curr. Appl. Phys. 12(3), 637–642 (2012)CrossRef D.H. Kim, Y.S. Yun, H.-J. Jin, Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Curr. Appl. Phys. 12(3), 637–642 (2012)CrossRef
10.
Zurück zum Zitat F. Torrens, Calculations on solvents and co-solvents of single-wall carbon nanotubes: Cyclopyranoses. Theochem 757(1), 183–191 (2005)CrossRef F. Torrens, Calculations on solvents and co-solvents of single-wall carbon nanotubes: Cyclopyranoses. Theochem 757(1), 183–191 (2005)CrossRef
11.
Zurück zum Zitat H.T. Ham, Y.S. Choi, I.J. Chung, An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J. Colloid Interface Sci. 286(1), 216–223 (2005)CrossRef H.T. Ham, Y.S. Choi, I.J. Chung, An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J. Colloid Interface Sci. 286(1), 216–223 (2005)CrossRef
12.
Zurück zum Zitat H. Gui, H. Chen, C.Y. Khripin, et al., Facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors. Nanoscale 8, 3467–3473 (2016)CrossRef H. Gui, H. Chen, C.Y. Khripin, et al., Facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors. Nanoscale 8, 3467–3473 (2016)CrossRef
13.
Zurück zum Zitat S.D. Bergin, Z. Sun, D. Rickard, et al., Multicomponent solubility parameters for single-walled carbon nanotube solvent mixtures. ACS Nano 3(8), 2340–2350 (2009)CrossRef S.D. Bergin, Z. Sun, D. Rickard, et al., Multicomponent solubility parameters for single-walled carbon nanotube solvent mixtures. ACS Nano 3(8), 2340–2350 (2009)CrossRef
14.
Zurück zum Zitat X. Peng, J. Jia, X. Gong, Z. Luan, B. Fan, Aqueous stability of oxidized carbon nanotubes and the precipitation by salts. J. Hazard. Mater. 165(1–3), 1239–1242 (2009)CrossRef X. Peng, J. Jia, X. Gong, Z. Luan, B. Fan, Aqueous stability of oxidized carbon nanotubes and the precipitation by salts. J. Hazard. Mater. 165(1–3), 1239–1242 (2009)CrossRef
15.
Zurück zum Zitat P. Alafogianni, K. Dassios, S. Farmaki, S.K. Antiohos, T.E. Matikas, N.-M. Barkoula, On the efficiency of UV–vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 495, 118–124 (2016)CrossRef P. Alafogianni, K. Dassios, S. Farmaki, S.K. Antiohos, T.E. Matikas, N.-M. Barkoula, On the efficiency of UV–vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 495, 118–124 (2016)CrossRef
16.
Zurück zum Zitat P. Kumar, H.B. Bohidar, Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 361(1–3), 13–24 (2010)CrossRef P. Kumar, H.B. Bohidar, Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 361(1–3), 13–24 (2010)CrossRef
17.
Zurück zum Zitat J.S. Kim, K.S. Song, J.H. Lee, I.J. Yu, Evaluation of biocompatible dispersants for carbon nanotube toxicity tests. Arch. Toxicol. 85(12), 1499–1508 (2011)CrossRef J.S. Kim, K.S. Song, J.H. Lee, I.J. Yu, Evaluation of biocompatible dispersants for carbon nanotube toxicity tests. Arch. Toxicol. 85(12), 1499–1508 (2011)CrossRef
18.
Zurück zum Zitat A.L. Alpatova, W. Shan, P. Babica, B.L. Upham, A.R. Rogensues, S.J. Masten, E. Drown, A.K. Mohanty, E.C. Alocilja, V.V. Tarabara, Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res. 44(2), 505–520 (2010)CrossRef A.L. Alpatova, W. Shan, P. Babica, B.L. Upham, A.R. Rogensues, S.J. Masten, E. Drown, A.K. Mohanty, E.C. Alocilja, V.V. Tarabara, Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res. 44(2), 505–520 (2010)CrossRef
19.
Zurück zum Zitat V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A.M. Galibert, B. Soulaa, E. Flahaut, Double-walled carbon nanotube dispersion via surfactant substitution. J. Mater. Chem 19, 2729–2736 (2009)CrossRef V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A.M. Galibert, B. Soulaa, E. Flahaut, Double-walled carbon nanotube dispersion via surfactant substitution. J. Mater. Chem 19, 2729–2736 (2009)CrossRef
20.
Zurück zum Zitat B. Sohrabi, N. Poorgholami-Bejarpasi, N. Nayeri, Dispersion of carbon nanotubes using mixed surfactants: Experimental and molecular dynamics simulation studies. J. Phys. Chem. B 118, 3094–3103 (2014)CrossRef B. Sohrabi, N. Poorgholami-Bejarpasi, N. Nayeri, Dispersion of carbon nanotubes using mixed surfactants: Experimental and molecular dynamics simulation studies. J. Phys. Chem. B 118, 3094–3103 (2014)CrossRef
21.
Zurück zum Zitat O. Deriabinaa, N. Lebovka, L. Bulavin, A. Goncharuk, Regulation of dispersion of carbon nanotubes in a mixture of good and bad solvents. Cornell University Library, arXiv:1304.5679, https://arxiv.org/abs/1304.5679. Accessed on 9 Feb 2017 O. Deriabinaa, N. Lebovka, L. Bulavin, A. Goncharuk, Regulation of dispersion of carbon nanotubes in a mixture of good and bad solvents. Cornell University Library, arXiv:1304.5679, https://​arxiv.​org/​abs/​1304.​5679. Accessed on 9 Feb 2017
22.
Zurück zum Zitat C.-Y. Chen, C.T. Jafvert, Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water. Environ. Sci. Technol. 44(17), 6674–6679 (2010)CrossRef C.-Y. Chen, C.T. Jafvert, Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water. Environ. Sci. Technol. 44(17), 6674–6679 (2010)CrossRef
23.
Zurück zum Zitat L. Zhou, Y. Zhang, Q. Wang, C. Ferronato, X. Yang, Photochemical behavior of carbon nanotubes in natural waters: Reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III). Environ. Sci. Pollut. Res. 23(19), 19520–19528 (2016)CrossRef L. Zhou, Y. Zhang, Q. Wang, C. Ferronato, X. Yang, Photochemical behavior of carbon nanotubes in natural waters: Reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III). Environ. Sci. Pollut. Res. 23(19), 19520–19528 (2016)CrossRef
24.
Zurück zum Zitat M.N. Ahmad, J.-Y. Xie, Y.-H. Ma, W.-T. Yang, Surface functionalization of single-walled carbon nanotubes using photolysis for enhanced dispersion in an organic solvent. Xinxing Tan Cailiao/ New Carbon Mater 25(2), 134–140 (2010)CrossRef M.N. Ahmad, J.-Y. Xie, Y.-H. Ma, W.-T. Yang, Surface functionalization of single-walled carbon nanotubes using photolysis for enhanced dispersion in an organic solvent. Xinxing Tan Cailiao/ New Carbon Mater 25(2), 134–140 (2010)CrossRef
25.
Zurück zum Zitat M.A. Hamon, K.L. Stensaas, M.A. Sugar, K.C. Tumminello, A.K. Allred, Reacting soluble single-walled carbon nanotubes with singlet oxygen. Chem. Phys. Lett. 447(1), 1–4 (2007)CrossRef M.A. Hamon, K.L. Stensaas, M.A. Sugar, K.C. Tumminello, A.K. Allred, Reacting soluble single-walled carbon nanotubes with singlet oxygen. Chem. Phys. Lett. 447(1), 1–4 (2007)CrossRef
26.
Zurück zum Zitat M. Li, M. Boggs, T.P. Beebe, C.P. Huang, Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 46(3), 466–475 (2008)CrossRef M. Li, M. Boggs, T.P. Beebe, C.P. Huang, Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 46(3), 466–475 (2008)CrossRef
27.
Zurück zum Zitat K.J. Ziegler, J. Shaver, R.H. Hauge, R.E. Smalley; I.M. Marek, Ozonation of carbon nanotubes in fluorocarbons. US20060159612, 2006 K.J. Ziegler, J. Shaver, R.H. Hauge, R.E. Smalley; I.M. Marek, Ozonation of carbon nanotubes in fluorocarbons. US20060159612, 2006
28.
Zurück zum Zitat R.E. Smalley, K.J. Ziegler, J. Shaver, R.H. Hauge, I.M. Marek, Ozonation of carbon nanotubes in fluorocarbons. WO07050096, 2007 R.E. Smalley, K.J. Ziegler, J. Shaver, R.H. Hauge, I.M. Marek, Ozonation of carbon nanotubes in fluorocarbons. WO07050096, 2007
29.
Zurück zum Zitat C. Song, P.E. Pehrsson, W. Zhao, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109(46), 21634–21639 (2005)CrossRef C. Song, P.E. Pehrsson, W. Zhao, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109(46), 21634–21639 (2005)CrossRef
30.
Zurück zum Zitat C. Niu, D. Moy, J. Ma, A. Chishti Modification of nanotubes oxidation with peroxygen compounds. US6872681, 2005 C. Niu, D. Moy, J. Ma, A. Chishti Modification of nanotubes oxidation with peroxygen compounds. US6872681, 2005
31.
Zurück zum Zitat S.A. Ntim, O. Sae-Khow, C. Desai, F.A. Witzmann, S. Mitra, Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes. J. Environ. Monit. 14(10), 2772–2779 (2012)CrossRef S.A. Ntim, O. Sae-Khow, C. Desai, F.A. Witzmann, S. Mitra, Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes. J. Environ. Monit. 14(10), 2772–2779 (2012)CrossRef
32.
Zurück zum Zitat T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269(1), 41–53 (2010)CrossRef T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269(1), 41–53 (2010)CrossRef
33.
Zurück zum Zitat B. Zhao, H. Hu, S. Niyogi, M.E. Itkis, M.A. Hamon, P. Bhowmik, M.S. Meier, R.C. Haddon, Chromatographic purification and properties of soluble single-walled carbon nanotubes. J. Am. Chem. Soc. 123(47), 11673–11677 (2001)CrossRef B. Zhao, H. Hu, S. Niyogi, M.E. Itkis, M.A. Hamon, P. Bhowmik, M.S. Meier, R.C. Haddon, Chromatographic purification and properties of soluble single-walled carbon nanotubes. J. Am. Chem. Soc. 123(47), 11673–11677 (2001)CrossRef
34.
Zurück zum Zitat S. Niyogi, H. Hu, M.A. Hamon, P. Bhowmik, B. Zhao, S.M. Rozenzhak, J. Chen, R.C. Haddon, Chromatographic purification of soluble single-walled carbon nanotubes (s-SWCNTS). J. Am. Chem. Soc. 123(4), 733–734 (2001)CrossRef S. Niyogi, H. Hu, M.A. Hamon, P. Bhowmik, B. Zhao, S.M. Rozenzhak, J. Chen, R.C. Haddon, Chromatographic purification of soluble single-walled carbon nanotubes (s-SWCNTS). J. Am. Chem. Soc. 123(4), 733–734 (2001)CrossRef
35.
Zurück zum Zitat N. Tagmatarchis, A. Zattoni, P. Reschiglian, M. Prato, Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation. Carbon 43(9), 1984–1989 (2005)CrossRef N. Tagmatarchis, A. Zattoni, P. Reschiglian, M. Prato, Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation. Carbon 43(9), 1984–1989 (2005)CrossRef
36.
Zurück zum Zitat H. Jia, Y. Lian, M.O. Ishitsuka, T. Nakahodo, Y. Maeda, T. Tsuchiya, T. Wakahara, T. Akasaka, Centrifugal purification of chemically modified single-walled carbon nanotubes. Sci. Technol. Adv. Mater. 6(6), 571–581 (2005)CrossRef H. Jia, Y. Lian, M.O. Ishitsuka, T. Nakahodo, Y. Maeda, T. Tsuchiya, T. Wakahara, T. Akasaka, Centrifugal purification of chemically modified single-walled carbon nanotubes. Sci. Technol. Adv. Mater. 6(6), 571–581 (2005)CrossRef
37.
Zurück zum Zitat Y. Lian, Y. Maeda, T. Wakahara, T. Nakahodo, T. Akasaka, S. Kazaoui, N. Minami, H. Tokumoto, Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes. Carbon 43(13), 2750–2759 (2005)CrossRef Y. Lian, Y. Maeda, T. Wakahara, T. Nakahodo, T. Akasaka, S. Kazaoui, N. Minami, H. Tokumoto, Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes. Carbon 43(13), 2750–2759 (2005)CrossRef
38.
Zurück zum Zitat J.M. Hughes, D. Aherne, S.D. Bergin, A. Oneill, P.V. Streich, J.P. Hamilton, J.N. Coleman, Using solution thermodynamics to describe the dispersion of rod-like solutes: Application to dispersions of carbon nanotubes in organic solvents. Nanotechnology 23(26.), art. no), 265604 (2012)CrossRef J.M. Hughes, D. Aherne, S.D. Bergin, A. Oneill, P.V. Streich, J.P. Hamilton, J.N. Coleman, Using solution thermodynamics to describe the dispersion of rod-like solutes: Application to dispersions of carbon nanotubes in organic solvents. Nanotechnology 23(26.), art. no), 265604 (2012)CrossRef
39.
Zurück zum Zitat J. Gigault, B. Grassl, G. Lespes, A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies. Analyst 137(4), 917–923 (2012)CrossRef J. Gigault, B. Grassl, G. Lespes, A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies. Analyst 137(4), 917–923 (2012)CrossRef
40.
Zurück zum Zitat I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15), 3124–3131 (2005)CrossRef I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15), 3124–3131 (2005)CrossRef
41.
Zurück zum Zitat C.G. Salzmann, B.T.T. Chu, G. Tobias, S.A. Llewellyn, M.L.H. Green, Quantitative assessment of carbon nanotube dispersions by Raman spectroscopy. Carbon 45(5), 907–912 (2007)CrossRef C.G. Salzmann, B.T.T. Chu, G. Tobias, S.A. Llewellyn, M.L.H. Green, Quantitative assessment of carbon nanotube dispersions by Raman spectroscopy. Carbon 45(5), 907–912 (2007)CrossRef
42.
Zurück zum Zitat O. Kleinerman, A.N.G. Parra-Vazquez, et al., Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. J. Microsc. 259(1), 16–25 (2015)CrossRef O. Kleinerman, A.N.G. Parra-Vazquez, et al., Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. J. Microsc. 259(1), 16–25 (2015)CrossRef
43.
Zurück zum Zitat Y. Chen, J. Chen, H. Hu, M.A. Hamon, M.E. Itkis, R.C. Haddon, Solution-phase EPR studies of single-walled carbon nanotubes. Chem. Phys. Lett. 299(6), 532–535 (1999)CrossRef Y. Chen, J. Chen, H. Hu, M.A. Hamon, M.E. Itkis, R.C. Haddon, Solution-phase EPR studies of single-walled carbon nanotubes. Chem. Phys. Lett. 299(6), 532–535 (1999)CrossRef
44.
Zurück zum Zitat M. Gallo, A. Favila, D. Glossman-Mitnik, DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett. 447(1), 105–109 (2007)CrossRef M. Gallo, A. Favila, D. Glossman-Mitnik, DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett. 447(1), 105–109 (2007)CrossRef
45.
Zurück zum Zitat D. Paolucci, M. Marcaccio, C. Bruno, F. Paolucci, N. Tagmatarchis, M. Prato, Voltammetric quantum charging capacitance behaviour of functionalised carbon nanotubes in solution. Electrochim. Acta 53(11), 4059–4064 (2008)CrossRef D. Paolucci, M. Marcaccio, C. Bruno, F. Paolucci, N. Tagmatarchis, M. Prato, Voltammetric quantum charging capacitance behaviour of functionalised carbon nanotubes in solution. Electrochim. Acta 53(11), 4059–4064 (2008)CrossRef
46.
Zurück zum Zitat G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)CrossRef G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)CrossRef
47.
Zurück zum Zitat M. Melle-Franco, M. Marcaccio, D. Paolucci, F. Paolucci, V. Georgakilas, D.G. Guldi, M. Prato, F. Zerbetto, Cyclic voltammetry and bulk electronic properties of soluble carbon nanotubes. J. Amer. Chem. Soc. 126(6), 1646–1647 (2004)CrossRef M. Melle-Franco, M. Marcaccio, D. Paolucci, F. Paolucci, V. Georgakilas, D.G. Guldi, M. Prato, F. Zerbetto, Cyclic voltammetry and bulk electronic properties of soluble carbon nanotubes. J. Amer. Chem. Soc. 126(6), 1646–1647 (2004)CrossRef
48.
Zurück zum Zitat J. Martí, M.C. Gordillo, Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119(23), 12540–12546 (2003)CrossRef J. Martí, M.C. Gordillo, Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119(23), 12540–12546 (2003)CrossRef
49.
Zurück zum Zitat S.M. Fatemi, M. Foroutan, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 6, 29–40 (2016)CrossRef S.M. Fatemi, M. Foroutan, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 6, 29–40 (2016)CrossRef
50.
Zurück zum Zitat J.-Y. Chang, A. Ghule, J.-J. Chang, S.-H. Tzing, Y.-C. Ling, Opening and thinning of multiwall carbon nanotubes in supercritical water. Chem. Phys. Lett. 363(5), 583–590 (2002)CrossRef J.-Y. Chang, A. Ghule, J.-J. Chang, S.-H. Tzing, Y.-C. Ling, Opening and thinning of multiwall carbon nanotubes in supercritical water. Chem. Phys. Lett. 363(5), 583–590 (2002)CrossRef
51.
Zurück zum Zitat B. Benedict, P.E. Pehrsson, W. Zhao, Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water. J. Phys. Chem. B 109(16), 7778–7780 (2005)CrossRef B. Benedict, P.E. Pehrsson, W. Zhao, Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water. J. Phys. Chem. B 109(16), 7778–7780 (2005)CrossRef
52.
Zurück zum Zitat B.D. Holt, V. Roginskaya, B. Van Houten, M.F. Islam, K.N. Dahl, Dispersed single wall carbon nanotubes do not impact mitochondria structure or function, but technical issues during analysis could yield incorrect results. J. Mater. Chem. B 5, 369–374 (2017)CrossRef B.D. Holt, V. Roginskaya, B. Van Houten, M.F. Islam, K.N. Dahl, Dispersed single wall carbon nanotubes do not impact mitochondria structure or function, but technical issues during analysis could yield incorrect results. J. Mater. Chem. B 5, 369–374 (2017)CrossRef
53.
Zurück zum Zitat C. Kuroda, H. Haniu, K. Ajima, et al., The dispersion state of tangled multi-walled carbon nanotubes affects their cytotoxicity. Nanomaterials 6, 219 (2016.) 10 ppCrossRef C. Kuroda, H. Haniu, K. Ajima, et al., The dispersion state of tangled multi-walled carbon nanotubes affects their cytotoxicity. Nanomaterials 6, 219 (2016.) 10 ppCrossRef
54.
Zurück zum Zitat M.O. Lisunova, N.I. Lebovka, O.V. Melezhyk, Y.P. Boiko, Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J. Colloid Interface Sci. 299(2), 740–746 (2006)CrossRef M.O. Lisunova, N.I. Lebovka, O.V. Melezhyk, Y.P. Boiko, Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J. Colloid Interface Sci. 299(2), 740–746 (2006)CrossRef
55.
Zurück zum Zitat A. Hirano, W. Gao, X. He, J. Kono, Destabilization of surfactant-dispersed carbon nanotubes by anions. Nanoscale Res. Lett. 12, 81 (2017)CrossRef A. Hirano, W. Gao, X. He, J. Kono, Destabilization of surfactant-dispersed carbon nanotubes by anions. Nanoscale Res. Lett. 12, 81 (2017)CrossRef
56.
Zurück zum Zitat H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.-P. Briand, A. Bianco, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6(7), 1522–1528 (2006)CrossRef H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.-P. Briand, A. Bianco, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6(7), 1522–1528 (2006)CrossRef
57.
Zurück zum Zitat H. Wilson, S. Ripp, L. Prisbrey, et al., Electrical monitoring of sp3 defect formation in individual carbon nanotubes. J. Phys. Chem. C 120, 1971–1976 (2016)CrossRef H. Wilson, S. Ripp, L. Prisbrey, et al., Electrical monitoring of sp3 defect formation in individual carbon nanotubes. J. Phys. Chem. C 120, 1971–1976 (2016)CrossRef
58.
Zurück zum Zitat M.D. Vo, D.V. Papavassiliou, D.V., Effect of sodium dodecyl sulfate adsorption on the behavior of water inside single walled carbon nanotubes with dissipative particle dynamics simulation. Molecules 21, 500 (2016.) 16 ppCrossRef M.D. Vo, D.V. Papavassiliou, D.V., Effect of sodium dodecyl sulfate adsorption on the behavior of water inside single walled carbon nanotubes with dissipative particle dynamics simulation. Molecules 21, 500 (2016.) 16 ppCrossRef
59.
Zurück zum Zitat J. Njuguna, O.A. Vanli, R. Liang, Spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015., Article ID 463156, 11 (2015)CrossRef J. Njuguna, O.A. Vanli, R. Liang, Spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015., Article ID 463156, 11 (2015)CrossRef
60.
Zurück zum Zitat Y. Zhang, S. Tan, H. Lopez. Determination of carbon nanotube concentration in a solution by fluorescence measurement. US20060141634 (2006) Y. Zhang, S. Tan, H. Lopez. Determination of carbon nanotube concentration in a solution by fluorescence measurement. US20060141634 (2006)
61.
Zurück zum Zitat A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: Formation of the microenvironment. J. Phys. Conf. Ser. 690, 012030 (2016.) 6 ppCrossRef A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: Formation of the microenvironment. J. Phys. Conf. Ser. 690, 012030 (2016.) 6 ppCrossRef
62.
Zurück zum Zitat M.H. Bocanegra-Bernal, J. Echeberria, J. Ollo, A. Garcia-Reyes, C. Domínguez-Riosa, A. Reyes-Rojas, A. Aguilar-Elguezabal, A comparison of the effects of multi-wall and single-wall carbon nanotube additions on the properties of zirconia toughened alumina composites. Carbon 49(5), 1599–1607 (2011)CrossRef M.H. Bocanegra-Bernal, J. Echeberria, J. Ollo, A. Garcia-Reyes, C. Domínguez-Riosa, A. Reyes-Rojas, A. Aguilar-Elguezabal, A comparison of the effects of multi-wall and single-wall carbon nanotube additions on the properties of zirconia toughened alumina composites. Carbon 49(5), 1599–1607 (2011)CrossRef
63.
Zurück zum Zitat M. Asgari, E. Lohrasbi, Comparison of single-walled and multiwalled carbon nanotubes durability as Pt support in gas diffusion electrodes. ISRN Electrochemistry 2013., ID 564784, 7 (2013)CrossRef M. Asgari, E. Lohrasbi, Comparison of single-walled and multiwalled carbon nanotubes durability as Pt support in gas diffusion electrodes. ISRN Electrochemistry 2013., ID 564784, 7 (2013)CrossRef
64.
Zurück zum Zitat L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P. Alvarez, Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29(12), 2713–2719 (2010)CrossRef L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P. Alvarez, Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29(12), 2713–2719 (2010)CrossRef
65.
Zurück zum Zitat K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, Thermal stability of single and multi-walled carbon nanotubes. Phys. Rev. B 71, 075424 (2005)CrossRef K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, Thermal stability of single and multi-walled carbon nanotubes. Phys. Rev. B 71, 075424 (2005)CrossRef
66.
Zurück zum Zitat S. Ferguson, N. McGara, B. Cavness, D. Gonzales, S. Williams, Spectra of radiation emitted by single-walled and multi-walled carbon nanotubes during multiple microwave irradiation and cooling cycles. Int. J. Nano Sci. Nanotechnol 4(1), 71–79 (2013) S. Ferguson, N. McGara, B. Cavness, D. Gonzales, S. Williams, Spectra of radiation emitted by single-walled and multi-walled carbon nanotubes during multiple microwave irradiation and cooling cycles. Int. J. Nano Sci. Nanotechnol 4(1), 71–79 (2013)
67.
Zurück zum Zitat E.E. Urena-Benavides, M.J. Kayatin, V.A. Davis, Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin. Macromolecules 46(4), 1642–1650 (2013)CrossRef E.E. Urena-Benavides, M.J. Kayatin, V.A. Davis, Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin. Macromolecules 46(4), 1642–1650 (2013)CrossRef
69.
Zurück zum Zitat A.N. Parra-Vasquez, N. Behabtu, M.J. Green, C.L. Pint, C.C. Young, J. Schmidt, E. Kesselman, A. Goyal, P.M. Ajayan, Y. Cohen, Y. Talmon, R.H. Hauge, M. Pasquali, Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano 4(7), 3969–3978 (2010)CrossRef A.N. Parra-Vasquez, N. Behabtu, M.J. Green, C.L. Pint, C.C. Young, J. Schmidt, E. Kesselman, A. Goyal, P.M. Ajayan, Y. Cohen, Y. Talmon, R.H. Hauge, M. Pasquali, Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano 4(7), 3969–3978 (2010)CrossRef
70.
Zurück zum Zitat V.A. Davis, A.N. Parra-Vasquez, et al., True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4, 830–834 (2009)CrossRef V.A. Davis, A.N. Parra-Vasquez, et al., True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4, 830–834 (2009)CrossRef
71.
Zurück zum Zitat P. Zhao, E. Einarsson, R. Xiang, Y. Murakami, S. Maruyama, Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J. Phys. Chem. C 114(11), 4831–4834 (2010)CrossRef P. Zhao, E. Einarsson, R. Xiang, Y. Murakami, S. Maruyama, Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J. Phys. Chem. C 114(11), 4831–4834 (2010)CrossRef
72.
Zurück zum Zitat K. Moshammer, F. Hennrich, M.M. Kappes, Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2, 599–606 (2009)CrossRef K. Moshammer, F. Hennrich, M.M. Kappes, Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2, 599–606 (2009)CrossRef
73.
Zurück zum Zitat R. Krupke, F. Hennrich, H. von Lohneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)CrossRef R. Krupke, F. Hennrich, H. von Lohneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)CrossRef
74.
Zurück zum Zitat B.R. Burg, J. Schneider, M. Muoth, L. Durrer, T. Helbling, N.C. Schirmer, T. Schwamb, C. Hierold, D. Poulikakos, Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes. Langmuir 25(14), 7778–7782 (2009)CrossRef B.R. Burg, J. Schneider, M. Muoth, L. Durrer, T. Helbling, N.C. Schirmer, T. Schwamb, C. Hierold, D. Poulikakos, Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes. Langmuir 25(14), 7778–7782 (2009)CrossRef
75.
Zurück zum Zitat N. Kumar Mehra, V. Mishra, N.K. Jain, A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 35, 1267–1283 (2014)CrossRef N. Kumar Mehra, V. Mishra, N.K. Jain, A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 35, 1267–1283 (2014)CrossRef
76.
Zurück zum Zitat D.W. Chang, I.-Y. Jeon, J.-B. Baek, L. Dai, Efficient dispersion of singlewalled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. Chem. Commun. 46(42), 7924–7926 (2010)CrossRef D.W. Chang, I.-Y. Jeon, J.-B. Baek, L. Dai, Efficient dispersion of singlewalled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. Chem. Commun. 46(42), 7924–7926 (2010)CrossRef
78.
Zurück zum Zitat O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003)CrossRef O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003)CrossRef
79.
Zurück zum Zitat N. Hadidi, F. Kobarfard, N. Nafissi-Varcheh, R. Aboofazeli, Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int. J. Nanomedicine 6, 737–746 (2011) N. Hadidi, F. Kobarfard, N. Nafissi-Varcheh, R. Aboofazeli, Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int. J. Nanomedicine 6, 737–746 (2011)
80.
Zurück zum Zitat H. Yilmaz, B. Rasulev, J. Leszczynski, Modeling the dispersibility of single walled carbon nanotubes in organic solvents by quantitative structure-activity relationship approach. Nanomaterials 5, 778–791 (2015)CrossRef H. Yilmaz, B. Rasulev, J. Leszczynski, Modeling the dispersibility of single walled carbon nanotubes in organic solvents by quantitative structure-activity relationship approach. Nanomaterials 5, 778–791 (2015)CrossRef
81.
Zurück zum Zitat A. Ansón-Casaos, J.M. González-Domínguez, I. Lafragüeta, J.A. Carrodeguas, M. Teresa Martíneza, Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon 66, 105–118 (2014)CrossRef A. Ansón-Casaos, J.M. González-Domínguez, I. Lafragüeta, J.A. Carrodeguas, M. Teresa Martíneza, Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon 66, 105–118 (2014)CrossRef
82.
Zurück zum Zitat N. Ould-Moussa, C. Blanca, C. Zamora-Ledezma, O.D. Lavrentovich, I.I. Smalyukhd, et al., Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liq. Cryst. 40(12), 1628–1635 (2013)CrossRef N. Ould-Moussa, C. Blanca, C. Zamora-Ledezma, O.D. Lavrentovich, I.I. Smalyukhd, et al., Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liq. Cryst. 40(12), 1628–1635 (2013)CrossRef
83.
Zurück zum Zitat L. Shao, G. Tobias, C.G. Salzmann, B. Ballesteros, S.Y. Hong, A. Crossley, B.G. Davis, M.L.H. Green, Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes. Chem. Commun. 21, 5090–5092 (2007)CrossRef L. Shao, G. Tobias, C.G. Salzmann, B. Ballesteros, S.Y. Hong, A. Crossley, B.G. Davis, M.L.H. Green, Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes. Chem. Commun. 21, 5090–5092 (2007)CrossRef
84.
Zurück zum Zitat L. Rodríguez-Pérez, R. García, M.A. Herranz, N. Martín, Modified SWCNTs with amphoteric redox and solubilizing properties. Chem. Eur. J. 20, 7177–7286 (2014)CrossRef L. Rodríguez-Pérez, R. García, M.A. Herranz, N. Martín, Modified SWCNTs with amphoteric redox and solubilizing properties. Chem. Eur. J. 20, 7177–7286 (2014)CrossRef
85.
Zurück zum Zitat Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)CrossRef Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)CrossRef
86.
Zurück zum Zitat J. Campo, Y. Piao, S. Lam, et al., Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horiz. 1, 317–324 (2016)CrossRef J. Campo, Y. Piao, S. Lam, et al., Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horiz. 1, 317–324 (2016)CrossRef
87.
Zurück zum Zitat M. Mananghaya, E. Rodulfo, G.N. Santos, A.R. Villagracia, Theoretical investigation on the Solubilization in water of functionalized single-wall carbon nanotubes. J. Nanotechnol 2012, 6 (2012., Article ID 780815)CrossRef M. Mananghaya, E. Rodulfo, G.N. Santos, A.R. Villagracia, Theoretical investigation on the Solubilization in water of functionalized single-wall carbon nanotubes. J. Nanotechnol 2012, 6 (2012., Article ID 780815)CrossRef
88.
Zurück zum Zitat A. Kitaygorodskiy, W. Wang, S.-Y. Xie, Y. Lin, K.A.S. Fernando, X. Wang, L. Qu, Y.-P. Sun, NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)CrossRef A. Kitaygorodskiy, W. Wang, S.-Y. Xie, Y. Lin, K.A.S. Fernando, X. Wang, L. Qu, Y.-P. Sun, NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)CrossRef
89.
Zurück zum Zitat H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci. Rep 4, 3907 (2014)CrossRef H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci. Rep 4, 3907 (2014)CrossRef
90.
Zurück zum Zitat E. Heister, C. Lamprecht, V. Neves, et al., Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4(5), 2615–2626 (2010)CrossRef E. Heister, C. Lamprecht, V. Neves, et al., Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4(5), 2615–2626 (2010)CrossRef
91.
Zurück zum Zitat S. Endoh, J. Maru, A. Miyauchi, Characterization of shape of carbon nanotubes, CNTs dispersed in water by sonication. J. Soc. Powder Technol Japan 49(6.), Special Issue of 47th Particle Technology Meeting), 483–488 (2012)CrossRef S. Endoh, J. Maru, A. Miyauchi, Characterization of shape of carbon nanotubes, CNTs dispersed in water by sonication. J. Soc. Powder Technol Japan 49(6.), Special Issue of 47th Particle Technology Meeting), 483–488 (2012)CrossRef
92.
Zurück zum Zitat M. Campo, A. Jiménez-Suárez, A. Ureña, Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324–325, 100–108 (2015)CrossRef M. Campo, A. Jiménez-Suárez, A. Ureña, Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324–325, 100–108 (2015)CrossRef
93.
Zurück zum Zitat M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59, 1319–1322 (2010)CrossRef M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59, 1319–1322 (2010)CrossRef
95.
Zurück zum Zitat X. Chang, M. Henderson, D. Bouchard, Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions. Presented at 248th ACS National Meeting and Exposition, San Francisco, 10–14 August 2014 X. Chang, M. Henderson, D. Bouchard, Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions. Presented at 248th ACS National Meeting and Exposition, San Francisco, 10–14 August 2014
96.
Zurück zum Zitat J. Jidraph Njuguna, O. Arda Vanli, R. Liang, A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015., Article ID 463156, 11 (2015) J. Jidraph Njuguna, O. Arda Vanli, R. Liang, A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015., Article ID 463156, 11 (2015)
97.
Zurück zum Zitat Z.F. Li, G.H. Luo, W.P. Zhou, F. Wei, R. Xiang, Y.P. Liu, The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology 17(15), 3692 Z.F. Li, G.H. Luo, W.P. Zhou, F. Wei, R. Xiang, Y.P. Liu, The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology 17(15), 3692
98.
Zurück zum Zitat B. Yang, L. Ren, L. Li, X. Tao, Y. Shi, Y. Zheng, The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-vis-NIR absorption spectroscopy. Analyst 138, 6671–6676 (2013)CrossRef B. Yang, L. Ren, L. Li, X. Tao, Y. Shi, Y. Zheng, The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-vis-NIR absorption spectroscopy. Analyst 138, 6671–6676 (2013)CrossRef
99.
Zurück zum Zitat S. Attal, R. Thiruvengadathan, O. Regev, Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV−visible absorption spectroscopy. Anal. Chem. 78(23), 8098–8104 (2006)CrossRef S. Attal, R. Thiruvengadathan, O. Regev, Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV−visible absorption spectroscopy. Anal. Chem. 78(23), 8098–8104 (2006)CrossRef
100.
Zurück zum Zitat Y. Shi, L. Ren, D. Li, H. Gao, B. Yang, Optimization conditions for single-walled carbon nanotubes dispersion. J. Surf. Eng. Mater. Adv. Technol 3, 6–12 (2013) Y. Shi, L. Ren, D. Li, H. Gao, B. Yang, Optimization conditions for single-walled carbon nanotubes dispersion. J. Surf. Eng. Mater. Adv. Technol 3, 6–12 (2013)
101.
Zurück zum Zitat J.A. Fagan, M.L. Becker, J. Chun, P. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, E.K. Hobbie, Centrifugal length separation of carbon nanotubes. Langmuir 24, 13880–13889 (2008)CrossRef J.A. Fagan, M.L. Becker, J. Chun, P. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, E.K. Hobbie, Centrifugal length separation of carbon nanotubes. Langmuir 24, 13880–13889 (2008)CrossRef
103.
Zurück zum Zitat M.-c. Yang, M.-y. Li, S. Luo, R. Liang, Real-time monitoring of carbon nanotube dispersion using dynamic light scattering and UV-vis spectroscopy. Int. J. Adv. Manuf. Technol. 82(1), 361–367 (2016)CrossRef M.-c. Yang, M.-y. Li, S. Luo, R. Liang, Real-time monitoring of carbon nanotube dispersion using dynamic light scattering and UV-vis spectroscopy. Int. J. Adv. Manuf. Technol. 82(1), 361–367 (2016)CrossRef
104.
Zurück zum Zitat L. Reinert, M. Zeiger, S. Suarez, V. Presser, F. Mucklicha, Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015)CrossRef L. Reinert, M. Zeiger, S. Suarez, V. Presser, F. Mucklicha, Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015)CrossRef
105.
Zurück zum Zitat J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)CrossRef J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)CrossRef
106.
Zurück zum Zitat C.S.S.R. Kumar, Raman Spectroscopy for Nanomaterials Characterization (Springer, Berlin, 2012), p. 645CrossRef C.S.S.R. Kumar, Raman Spectroscopy for Nanomaterials Characterization (Springer, Berlin, 2012), p. 645CrossRef
107.
Zurück zum Zitat Y. Wang, D. Vasileva, S.P. Zustiak, I. Kuljanishvili, Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases 12(1), 011004 (2017)CrossRef Y. Wang, D. Vasileva, S.P. Zustiak, I. Kuljanishvili, Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases 12(1), 011004 (2017)CrossRef
108.
Zurück zum Zitat M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)CrossRef M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)CrossRef
109.
Zurück zum Zitat V.M. Irurzun, M. Pilar Ruiz, D.E. Resasco, Raman intensity measurements of single-walled carbon nanotube suspensions as a quantitative technique to assess purity. Carbon 48, 2873–2881 (2010)CrossRef V.M. Irurzun, M. Pilar Ruiz, D.E. Resasco, Raman intensity measurements of single-walled carbon nanotube suspensions as a quantitative technique to assess purity. Carbon 48, 2873–2881 (2010)CrossRef
110.
Zurück zum Zitat B.R. Priya, H.J. Byrne, Quantitative analysis of dispersion and doping of individual carbon nanotubes in water based solutions using absorption and Raman spectroscopy. Phys. Stat. Sol. (b) 245(10), 1964–1966 (2008)CrossRef B.R. Priya, H.J. Byrne, Quantitative analysis of dispersion and doping of individual carbon nanotubes in water based solutions using absorption and Raman spectroscopy. Phys. Stat. Sol. (b) 245(10), 1964–1966 (2008)CrossRef
111.
Zurück zum Zitat M.-M. Li, Z.-P. Wu, M. Zhao, W.-B. Zhang, Y.-Y. Hu, Y.-H. Yin, Preparation of homogeneously dispersed and highly concentrated double-walled carbon nanotubes as catalyst support. Rare Metals 35(4), 337–343 (2016)CrossRef M.-M. Li, Z.-P. Wu, M. Zhao, W.-B. Zhang, Y.-Y. Hu, Y.-H. Yin, Preparation of homogeneously dispersed and highly concentrated double-walled carbon nanotubes as catalyst support. Rare Metals 35(4), 337–343 (2016)CrossRef
113.
Zurück zum Zitat T. Thuy Nguyen, S. Uan Nguyen, D. Tam Phuong, D. Chien Nguyen, A. Tuan Mai, Dispersion of denatured carbon nanotubes by using a dimethylformamide solution. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035015 (2011.) 4 ppCrossRef T. Thuy Nguyen, S. Uan Nguyen, D. Tam Phuong, D. Chien Nguyen, A. Tuan Mai, Dispersion of denatured carbon nanotubes by using a dimethylformamide solution. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035015 (2011.) 4 ppCrossRef
114.
Zurück zum Zitat D. Douroumis, D.G. Fatouros, N. Bouropoulos, K. Papagelis, D. Tasis, Int. J. Nanomedicine 2(4), 761–766 (2007) D. Douroumis, D.G. Fatouros, N. Bouropoulos, K. Papagelis, D. Tasis, Int. J. Nanomedicine 2(4), 761–766 (2007)
115.
Zurück zum Zitat J. Hee Kim, M. Kataoka, D. Shimamoto, et al., Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. ACS Nano 4(2), 1060–1066 (2010)CrossRef J. Hee Kim, M. Kataoka, D. Shimamoto, et al., Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. ACS Nano 4(2), 1060–1066 (2010)CrossRef
116.
Zurück zum Zitat F. Villalpando-Paez, H. Son, D. Nezich, et al., Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. Nano Lett. 8(11), 3879–3886 (2008)CrossRef F. Villalpando-Paez, H. Son, D. Nezich, et al., Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. Nano Lett. 8(11), 3879–3886 (2008)CrossRef
117.
Zurück zum Zitat J. Zhao, Morphology and dispersion of pristine and modified carbon Nanofibers in water, in Nanofibers, ed. by A. Kumar (Ed), (INTECH, Rijeka, Croatia, 2010), pp. 269–294 J. Zhao, Morphology and dispersion of pristine and modified carbon Nanofibers in water, in Nanofibers, ed. by A. Kumar (Ed), (INTECH, Rijeka, Croatia, 2010), pp. 269–294
119.
Zurück zum Zitat J.J. Hernández, M.C. García-Gutiérrez, A. Nogales, D.R. Rueda, T.A. Ezquerra, Small-angle X-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate). Compos. Sci. Technol. 66, 2629–2632 (2006)CrossRef J.J. Hernández, M.C. García-Gutiérrez, A. Nogales, D.R. Rueda, T.A. Ezquerra, Small-angle X-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate). Compos. Sci. Technol. 66, 2629–2632 (2006)CrossRef
120.
Zurück zum Zitat S. Pujari, Shear-induced anisotropy of concentrated multiwalled carbon nanotube suspensions using x-ray scattering. J. Rheol. 55, 1033 (2011)CrossRef S. Pujari, Shear-induced anisotropy of concentrated multiwalled carbon nanotube suspensions using x-ray scattering. J. Rheol. 55, 1033 (2011)CrossRef
121.
Zurück zum Zitat E. Ramos, W.A. Pardo, M. Mir, J. Samitier, Dependence of carbon nanotubes dispersion kinetics on surfactants. Nanotechnology 28(13), 135702 (2017)CrossRef E. Ramos, W.A. Pardo, M. Mir, J. Samitier, Dependence of carbon nanotubes dispersion kinetics on surfactants. Nanotechnology 28(13), 135702 (2017)CrossRef
122.
Zurück zum Zitat C. Doe, T.-H. Kim, S.R. Kline, S.-M. Choi Small angle neutron scattering study of isolated single wall carbon nanotubes in water. Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 10–11, 2007 C. Doe, T.-H. Kim, S.R. Kline, S.-M. Choi Small angle neutron scattering study of isolated single wall carbon nanotubes in water. Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 10–11, 2007
123.
Zurück zum Zitat H. Wang, W. Zhou, D.L. Ho, et al., Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study. Nano Lett. 4(9), 1789–1793 (2004)CrossRef H. Wang, W. Zhou, D.L. Ho, et al., Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study. Nano Lett. 4(9), 1789–1793 (2004)CrossRef
124.
Zurück zum Zitat E.S. Kastrisianaki-Guyton, L. Chen, S.E. Rogers, T. Cosgrove, J.S. van Duijneveldt, Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. J. Colloid Interface Sci. 472, 1–7 (2016)CrossRef E.S. Kastrisianaki-Guyton, L. Chen, S.E. Rogers, T. Cosgrove, J.S. van Duijneveldt, Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. J. Colloid Interface Sci. 472, 1–7 (2016)CrossRef
125.
Zurück zum Zitat K. Yurekli, C.A. Mitchell, R. Krishnamoorti, Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004)CrossRef K. Yurekli, C.A. Mitchell, R. Krishnamoorti, Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004)CrossRef
126.
Zurück zum Zitat B.J. Bauer, E.K. Hobbie, M.L. Becker, Small-angle neutron scattering from labeled single-wall carbon nanotubes. Macromolecules 39, 2637–2642 (2006)CrossRef B.J. Bauer, E.K. Hobbie, M.L. Becker, Small-angle neutron scattering from labeled single-wall carbon nanotubes. Macromolecules 39, 2637–2642 (2006)CrossRef
127.
Zurück zum Zitat W. Zhou, M.F. Islam, H. Wang, et al., Small angle neutron scattering from single-wall carbon nanotube suspensions: Evidence for isolated rigid rods and rod networks. Chem. Phys. Lett. 384, 185–189 (2004)CrossRef W. Zhou, M.F. Islam, H. Wang, et al., Small angle neutron scattering from single-wall carbon nanotube suspensions: Evidence for isolated rigid rods and rod networks. Chem. Phys. Lett. 384, 185–189 (2004)CrossRef
128.
Zurück zum Zitat L.A. Hough, M.F. Islam, B. Hammouda, A.G. Yodh, P.A. Heiney, Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett. 6(2), 313–317 (2006)CrossRef L.A. Hough, M.F. Islam, B. Hammouda, A.G. Yodh, P.A. Heiney, Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett. 6(2), 313–317 (2006)CrossRef
129.
Zurück zum Zitat M. Granite, A. Radulescu, Y. Cohen, Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and poly(vinylpyrrolidone). Langmuir 28, 11025–11031 (2012)CrossRef M. Granite, A. Radulescu, Y. Cohen, Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and poly(vinylpyrrolidone). Langmuir 28, 11025–11031 (2012)CrossRef
131.
Zurück zum Zitat X. Fu, J. Wang, J. Ding, H. Wu, Y. Dong, Y. Fu, Quantitative evaluation of carbon nanotube dispersion through scanning electron microscopy images. Compos. Sci. Technol. 87, 170–173 (2013)CrossRef X. Fu, J. Wang, J. Ding, H. Wu, Y. Dong, Y. Fu, Quantitative evaluation of carbon nanotube dispersion through scanning electron microscopy images. Compos. Sci. Technol. 87, 170–173 (2013)CrossRef
132.
Zurück zum Zitat R. Herrera-Basurto, A.I. López-Lorente, M. Valcárcel, Scanning electron microscopy of carbon nanotubes dispersed in ionic liquid: Solvent influence study. Microchem. J. 122, 137–143 (2015)CrossRef R. Herrera-Basurto, A.I. López-Lorente, M. Valcárcel, Scanning electron microscopy of carbon nanotubes dispersed in ionic liquid: Solvent influence study. Microchem. J. 122, 137–143 (2015)CrossRef
133.
Zurück zum Zitat B. Baykal, V. Ibrahimova, G. Er, E. Bengu, D. Tuncel, Dispersion of multi-walled carbon nanotubes in an aqueous medium by water-dispersible conjugated polymer nanoparticles. Chem. Commun. 46, 6762–6764 (2010)CrossRef B. Baykal, V. Ibrahimova, G. Er, E. Bengu, D. Tuncel, Dispersion of multi-walled carbon nanotubes in an aqueous medium by water-dispersible conjugated polymer nanoparticles. Chem. Commun. 46, 6762–6764 (2010)CrossRef
134.
Zurück zum Zitat J. Mast, E. Verleysen, P.-J. De Temmerman, Physical characterization of nanomaterials in dispersion by transmission electron microscopy in a regulatory framework. in Advanced Transmission Electron Microscopy, ed. by F. L. Deepak, A. Mayoral, R. Arenal (Eds), (Springer, Cham, 2015) J. Mast, E. Verleysen, P.-J. De Temmerman, Physical characterization of nanomaterials in dispersion by transmission electron microscopy in a regulatory framework. in Advanced Transmission Electron Microscopy, ed. by F. L. Deepak, A. Mayoral, R. Arenal (Eds), (Springer, Cham, 2015)
135.
Zurück zum Zitat Q. Quanxiang Li, J.S. Church, A. Kafi, M. Naebe, B.L. Fox, An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents. J. Nanopart. Res. 16, 2513, 12 pp (2014)CrossRef Q. Quanxiang Li, J.S. Church, A. Kafi, M. Naebe, B.L. Fox, An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents. J. Nanopart. Res. 16, 2513, 12 pp (2014)CrossRef
136.
Zurück zum Zitat M. Bottini, A. Magrini, N. Rosato, A. Bergamaschi, T. Mustelin, Dispersion of pristine single-walled carbon nanotubes in water by a thiolated organosilane: Application in supramolecular nanoassemblies. J. Phys. Chem. B 110(28), 13685–13688 (2006)CrossRef M. Bottini, A. Magrini, N. Rosato, A. Bergamaschi, T. Mustelin, Dispersion of pristine single-walled carbon nanotubes in water by a thiolated organosilane: Application in supramolecular nanoassemblies. J. Phys. Chem. B 110(28), 13685–13688 (2006)CrossRef
137.
Zurück zum Zitat A. Prakash Periasamy, Y.-H. Ho, S.-M. Chen, Multiwalled carbon nanotubes dispersed in carminic acid for the development of catalase based biosensor for selective amperometric determination of H2O2 and iodate. Biosens. Bioelectron. 29, 151–158 (2011)CrossRef A. Prakash Periasamy, Y.-H. Ho, S.-M. Chen, Multiwalled carbon nanotubes dispersed in carminic acid for the development of catalase based biosensor for selective amperometric determination of H2O2 and iodate. Biosens. Bioelectron. 29, 151–158 (2011)CrossRef
138.
Zurück zum Zitat A. Jagusiak, B. Piekarska, T. Pańczyk, et al., Dispersion of single-wall carbon nanotubes with supramolecular Congo red – Properties of the complexes and mechanism of the interaction. Beilstein J. Nanotechnol. 8, 636–648 (2017)CrossRef A. Jagusiak, B. Piekarska, T. Pańczyk, et al., Dispersion of single-wall carbon nanotubes with supramolecular Congo red – Properties of the complexes and mechanism of the interaction. Beilstein J. Nanotechnol. 8, 636–648 (2017)CrossRef
139.
Zurück zum Zitat S. Hirayama, T. Hayashida, K. Umemura, Atomic force microscopy imaging of dialyzed single-walled carbon nanotubes dispersed with sodium dodecyl sulfate. Int. J. Smart Nano Mater. 4(2), 119–127 (2013)CrossRef S. Hirayama, T. Hayashida, K. Umemura, Atomic force microscopy imaging of dialyzed single-walled carbon nanotubes dispersed with sodium dodecyl sulfate. Int. J. Smart Nano Mater. 4(2), 119–127 (2013)CrossRef
140.
Zurück zum Zitat S. Kumar, I. Kaur, N. Kumari, et al., Atomic force microscope manipulation of multiwalled and single walled carbon nanotubes with reflux and ultrasonic treatments. Appl. Nanosci. 4, 19–26 (2014)CrossRef S. Kumar, I. Kaur, N. Kumari, et al., Atomic force microscope manipulation of multiwalled and single walled carbon nanotubes with reflux and ultrasonic treatments. Appl. Nanosci. 4, 19–26 (2014)CrossRef
141.
Zurück zum Zitat Z. Dong, U.C. Wejinya, Electrical properties measurement of Carbon Nanotubes using Atomic Force Microscope for nano sensor applications. 2010, Xiamen, China, doi: 10.1109/NEMS.2010.5592261. Published in: 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) Z. Dong, U.C. Wejinya, Electrical properties measurement of Carbon Nanotubes using Atomic Force Microscope for nano sensor applications. 2010, Xiamen, China, doi: 10.​1109/​NEMS.​2010.​5592261. Published in: 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
142.
Zurück zum Zitat D. Yoon, J.-B. Choi, C.-S. Han, Y.-J. Kim, S. Baik, The quantitative characterization of the dispersion state of single-walled carbon nanotubes using Raman spectroscopy and atomic force microscopy. Carbon 46, 1530–1534 (2008)CrossRef D. Yoon, J.-B. Choi, C.-S. Han, Y.-J. Kim, S. Baik, The quantitative characterization of the dispersion state of single-walled carbon nanotubes using Raman spectroscopy and atomic force microscopy. Carbon 46, 1530–1534 (2008)CrossRef
143.
Zurück zum Zitat Z. Zhang, Y. Che, R.A. Smaldone, M. Xu, B.R. Bunes, J.S. Moore, L. Zang, Reversible dispersion and release of carbon nanotubes using foldable oligomers. J. Am. Chem. Soc. 132(40), 14113–14117 (2010)CrossRef Z. Zhang, Y. Che, R.A. Smaldone, M. Xu, B.R. Bunes, J.S. Moore, L. Zang, Reversible dispersion and release of carbon nanotubes using foldable oligomers. J. Am. Chem. Soc. 132(40), 14113–14117 (2010)CrossRef
144.
Zurück zum Zitat S. Liu, A.K. Ng, R. Xu, et al., Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus Subtilis investigated by atomic force microscopy. Nanoscale 2, 2744–2750 (2010)CrossRef S. Liu, A.K. Ng, R. Xu, et al., Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus Subtilis investigated by atomic force microscopy. Nanoscale 2, 2744–2750 (2010)CrossRef
145.
Zurück zum Zitat S. Sadiq Ali, M. Shahabuddin, M. Asif, In situ monitoring of dispersion dynamics of carbon nanotubes during sonication using electrical conductivity measurements. J. Nanomater. 2015., Article ID 479053, 8 (2015) S. Sadiq Ali, M. Shahabuddin, M. Asif, In situ monitoring of dispersion dynamics of carbon nanotubes during sonication using electrical conductivity measurements. J. Nanomater. 2015., Article ID 479053, 8 (2015)
146.
Zurück zum Zitat J. Kolosnjaj, H. Szwarc, F. Moussa, Toxicity studies on carbon nanotubes: State of the art. ECS Trans. 35(25), 121–134 (2011)CrossRef J. Kolosnjaj, H. Szwarc, F. Moussa, Toxicity studies on carbon nanotubes: State of the art. ECS Trans. 35(25), 121–134 (2011)CrossRef
147.
Zurück zum Zitat Y. Morimoto, M. Hirohashi, M. Horie, et al., Pulmonary toxicity of well-dispersed single-wall carbon nanotubes following intratracheal instillation. J. Nano Res. 18-19, 9–25 (2012)CrossRef Y. Morimoto, M. Hirohashi, M. Horie, et al., Pulmonary toxicity of well-dispersed single-wall carbon nanotubes following intratracheal instillation. J. Nano Res. 18-19, 9–25 (2012)CrossRef
148.
Zurück zum Zitat M. Horie, M. Stowe, T. Kambara, et al., Pulmonary inflammation of well-dispersed multi-wall carbon nanotubes following intratracheal instillation: Toxicity by fiber of 1–5 μm in length. Materials 5, 2833–2849 (2012)CrossRef M. Horie, M. Stowe, T. Kambara, et al., Pulmonary inflammation of well-dispersed multi-wall carbon nanotubes following intratracheal instillation: Toxicity by fiber of 1–5 μm in length. Materials 5, 2833–2849 (2012)CrossRef
149.
Zurück zum Zitat J. Kayat, V. Gajbhiye, R. Kumar Tekade, et al., Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomedicine 7(1), 40–49 (2011)CrossRef J. Kayat, V. Gajbhiye, R. Kumar Tekade, et al., Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomedicine 7(1), 40–49 (2011)CrossRef
150.
Zurück zum Zitat G.M. Mutlu, M.C. Hersam, D. Urich, et al., Highly dispersed and purified preparations of single-walled carbon nanotubes do not cause detectable pulmonary toxicity. Am. J. Respir. Crit. Care Med. 179, A5251 (2009) G.M. Mutlu, M.C. Hersam, D. Urich, et al., Highly dispersed and purified preparations of single-walled carbon nanotubes do not cause detectable pulmonary toxicity. Am. J. Respir. Crit. Care Med. 179, A5251 (2009)
151.
Zurück zum Zitat K. Donaldson, C. Poland, R. Duffin (eds.), The Toxicology of Carbon Nanotubes (Cambridge University Press, Cambridge, 2012), p. 264 K. Donaldson, C. Poland, R. Duffin (eds.), The Toxicology of Carbon Nanotubes (Cambridge University Press, Cambridge, 2012), p. 264
152.
Zurück zum Zitat P. Gustavsson, M. Hedmer, J. Rissler, Carbon Nanotubes: Exposure, Toxicology and Protective Measures in the Work Environment (Swedish Work Environment Authority, Stockholm, Sweden, 2011) P. Gustavsson, M. Hedmer, J. Rissler, Carbon Nanotubes: Exposure, Toxicology and Protective Measures in the Work Environment (Swedish Work Environment Authority, Stockholm, Sweden, 2011)
153.
Zurück zum Zitat C.P. Firme III, P.R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. Biol. Med. 6, 245–256 (2010)CrossRef C.P. Firme III, P.R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. Biol. Med. 6, 245–256 (2010)CrossRef
154.
Zurück zum Zitat Movia, D.; Giordani, S. Toxicity of Carbon Nanotubes. Handbook of Green Chemistry. Weinheim: Wiley-VCH 2012, 8(7), 175–216. Movia, D.; Giordani, S. Toxicity of Carbon Nanotubes. Handbook of Green Chemistry. Weinheim: Wiley-VCH 2012, 8(7), 175–216.
155.
Zurück zum Zitat A. Jafar, Y. Alshatti, A. Ahmad, Carbon nanotube toxicity: The smallest biggest debate in medical care. Cogent Med 3, 1217970 (2016)CrossRef A. Jafar, Y. Alshatti, A. Ahmad, Carbon nanotube toxicity: The smallest biggest debate in medical care. Cogent Med 3, 1217970 (2016)CrossRef
157.
Zurück zum Zitat K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)CrossRef K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)CrossRef
158.
Zurück zum Zitat J. Cheng, S. Han Cheng, Influence of carbon nanotube length on toxicity to zebrafish embryos. Int. J. Nanomedicine 7, 3731–3739 (2012)CrossRef J. Cheng, S. Han Cheng, Influence of carbon nanotube length on toxicity to zebrafish embryos. Int. J. Nanomedicine 7, 3731–3739 (2012)CrossRef
159.
Zurück zum Zitat S. Liu, L. Wei, L. Hao, et al., Sharper and faster nano darts kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12), 3891–3902 (2009)CrossRef S. Liu, L. Wei, L. Hao, et al., Sharper and faster nano darts kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12), 3891–3902 (2009)CrossRef
160.
Zurück zum Zitat Y. Morimoto, M. Hirohashi, N. Kobayashi, et al., Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology 6(7), 766–775 (2012)CrossRef Y. Morimoto, M. Hirohashi, N. Kobayashi, et al., Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology 6(7), 766–775 (2012)CrossRef
161.
Zurück zum Zitat L.P. Lukhele, B.B. Mamba, N. Musee, V. Wepener, Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J. Nanomater. 2015., Article ID 219074, 19 (2015)CrossRef L.P. Lukhele, B.B. Mamba, N. Musee, V. Wepener, Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J. Nanomater. 2015., Article ID 219074, 19 (2015)CrossRef
162.
Zurück zum Zitat H.C. Nerl, C. Cheng, A.E. Goode, S.D. Bergin, B. Lich, M. Gass, A.E. Porter, Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo. Nanomedicine 6(5), 849–865 (2011)CrossRef H.C. Nerl, C. Cheng, A.E. Goode, S.D. Bergin, B. Lich, M. Gass, A.E. Porter, Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo. Nanomedicine 6(5), 849–865 (2011)CrossRef
163.
Zurück zum Zitat L. Wang, V. Castranova, A. Mishra, et al., Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part. Fibre Toxicol. 7, 31 (2010)CrossRef L. Wang, V. Castranova, A. Mishra, et al., Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part. Fibre Toxicol. 7, 31 (2010)CrossRef
164.
Zurück zum Zitat G.M. Mutlu, G.R. Budinger, A.A. Green, et al., Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 10(5), 1664–1670 (2010)CrossRef G.M. Mutlu, G.R. Budinger, A.A. Green, et al., Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 10(5), 1664–1670 (2010)CrossRef
165.
Zurück zum Zitat K.W. Kwok, K.M. Leung, E. Flahaut, J. Cheng, S.H. Cheng, Chronic toxicity of double-walled carbon nanotubes to three marine organisms: Influence of different dispersion methods. Nanomedicine 5(6), 951–961 (2010)CrossRef K.W. Kwok, K.M. Leung, E. Flahaut, J. Cheng, S.H. Cheng, Chronic toxicity of double-walled carbon nanotubes to three marine organisms: Influence of different dispersion methods. Nanomedicine 5(6), 951–961 (2010)CrossRef
166.
Zurück zum Zitat R. Girardello, S. Tasselli, N. Baranzini, R. Valvassori, M. de Eguileor, A. Grimaldi, Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One 10(12), e0144361 (2015)CrossRef R. Girardello, S. Tasselli, N. Baranzini, R. Valvassori, M. de Eguileor, A. Grimaldi, Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One 10(12), e0144361 (2015)CrossRef
167.
Zurück zum Zitat G. Tejral, N. Reddy Panyala, J. Havel, Carbon nanotubes: Toxicological impact on human health and environment. J. Appl. Biomed. 7, 1–13 (2009) G. Tejral, N. Reddy Panyala, J. Havel, Carbon nanotubes: Toxicological impact on human health and environment. J. Appl. Biomed. 7, 1–13 (2009)
Metadaten
Titel
Special Studies and Characterization of CNT Dispersions
verfasst von
Oxana Vasilievna Kharissova
Boris Ildusovich Kharisov
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-62950-6_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.