Skip to main content
Erschienen in: Journal of Computational Electronics 1/2014

01.03.2014

Spin transport in N-armchair-edge silicene nanoribbons

verfasst von: Bhupesh Bishnoi, Bahniman Ghosh

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we have investigated spin polarized electronic transport in N-armchair-edge silicene nanoribbons (N-ASiNRs, where N is the number of atoms in armchair edge) using semi-classical Monte-Carlo approach. Monte Carlo simulations are used to model spin transport along with spin density matrix calculations in the semiconductor devices. The spin vector dephasing in the silicene nanoribbons are due to Elliott-Yafet (EY) and D’yakonov-Perel (DP) relaxation mechanisms. In this article, we theoretically studied spin polarized transport along the length of the N-armchair-edge silicene nanoribbons structure and the spin dephasing length is estimated to be in the range of 3 μm for N-ASiNRs. Next, we have investigated the ensemble averaged spin vector variation in N-ASiNRs along the length of the nanoribbons with varying temperature. We observe a negligible variation in the spin dephasing length in the temperature range of 4 K to 373 K. As the localized temperature increases from 373 K to 1000 K, we observe a decrease in the spin dephasing length by extrapolating the curve up to 1000 K and in these higher temperature ranges spin dephasing length decrease due to hot electron/phonon effects and higher scattering rates. We have also studied the ensemble averaged spin vector variation in N-ASiNRs along the length of the nanoribbons with varying width (N) of the nanoribbons and found negligible effect of width (N) on the spin dephasing length in N-ASiNRs. In our study, we finally find N-armchair-edge silicene nanoribbons to be the promising candidates for next generation spintronics devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) CrossRef
2.
Zurück zum Zitat Ruixiang, F., Qihang, L., Zheng, J., Hong, L., Chengyong, X., Zeyuan, N., Yangyang, W., Dapeng, Y., Zhengxiang, G., Jing, Q.: Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2, 853 (2012) Ruixiang, F., Qihang, L., Zheng, J., Hong, L., Chengyong, X., Zeyuan, N., Yangyang, W., Dapeng, Y., Zhengxiang, G., Jing, Q.: Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2, 853 (2012)
3.
Zurück zum Zitat Kyozaburo, T., Kenji, S.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916–14922 (1994) CrossRef Kyozaburo, T., Kenji, S.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916–14922 (1994) CrossRef
4.
Zurück zum Zitat Guzm’an-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007) CrossRef Guzm’an-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007) CrossRef
5.
Zurück zum Zitat Liang, Y., Wang, V., Mizuseki, H., Kawazoe, Y.: Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. J. Phys. Condens. Matter 24, 455302 (2012) CrossRef Liang, Y., Wang, V., Mizuseki, H., Kawazoe, Y.: Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. J. Phys. Condens. Matter 24, 455302 (2012) CrossRef
6.
Zurück zum Zitat Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B., Xu, K.W.: Modulation of the electronic and magnetic properties of the silicene nanoribbons by a single C chain. Eur. Phys. J. B 79(2), 197–202 (2011) CrossRef Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B., Xu, K.W.: Modulation of the electronic and magnetic properties of the silicene nanoribbons by a single C chain. Eur. Phys. J. B 79(2), 197–202 (2011) CrossRef
7.
Zurück zum Zitat Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., Le Lay, G.: Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010) CrossRef Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., Le Lay, G.: Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010) CrossRef
8.
Zurück zum Zitat De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P.M., Moras, P., Carbone, C., Topwal, D., Olivieri, B., Kara, A., Oughaddou, H., Aufray, B., Le Lay, G.: Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 261905 (2010) CrossRef De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P.M., Moras, P., Carbone, C., Topwal, D., Olivieri, B., Kara, A., Oughaddou, H., Aufray, B., Le Lay, G.: Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 261905 (2010) CrossRef
9.
Zurück zum Zitat Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010) CrossRef Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010) CrossRef
10.
Zurück zum Zitat Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012) CrossRef Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012) CrossRef
11.
Zurück zum Zitat De Padova, P., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., Le Lay, G.: Multilayer silicene nanoribbons. Nano Lett. 12, 5500–5503 (2012) CrossRef De Padova, P., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., Le Lay, G.: Multilayer silicene nanoribbons. Nano Lett. 12, 5500–5503 (2012) CrossRef
12.
Zurück zum Zitat Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12, 3507–3511 (2012) CrossRef Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12, 3507–3511 (2012) CrossRef
13.
Zurück zum Zitat De Padova, P., Quaresima, C., Olivieri, B., Perfetti, P., Le Lay, G.: Strong resistance of silicene nanoribbons towards oxidation. J. Phys. D, Appl. Phys. 44, 312001 (2011) CrossRef De Padova, P., Quaresima, C., Olivieri, B., Perfetti, P., Le Lay, G.: Strong resistance of silicene nanoribbons towards oxidation. J. Phys. D, Appl. Phys. 44, 312001 (2011) CrossRef
14.
Zurück zum Zitat An, X.T., Zhang, Y.Y., Liu, J.J., Li, S.S.: Spin-polarized current induced by a local exchange field in a silicene nanoribbon. New J. Phys. 14, 083039 (2012) CrossRef An, X.T., Zhang, Y.Y., Liu, J.J., Li, S.S.: Spin-polarized current induced by a local exchange field in a silicene nanoribbon. New J. Phys. 14, 083039 (2012) CrossRef
15.
Zurück zum Zitat De Padova, P., Perfetti, P., Olivieri, B., Quaresima, C., Ottaviani, C., Le Lay, G.: 1D graphene-like silicon systems: silicene. J. Phys. Condens. Matter 24, 223001 (2012) CrossRef De Padova, P., Perfetti, P., Olivieri, B., Quaresima, C., Ottaviani, C., Le Lay, G.: 1D graphene-like silicon systems: silicene. J. Phys. Condens. Matter 24, 223001 (2012) CrossRef
16.
Zurück zum Zitat Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012) CrossRef Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012) CrossRef
17.
Zurück zum Zitat Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F., Zheng, G.: Thermoelectric properties of armchair and zigzag silicene nanoribbons. Phys. Chem. Chem. Phys. 14, 13588–13593 (2012) CrossRef Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F., Zheng, G.: Thermoelectric properties of armchair and zigzag silicene nanoribbons. Phys. Chem. Chem. Phys. 14, 13588–13593 (2012) CrossRef
18.
Zurück zum Zitat Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009) CrossRef Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009) CrossRef
19.
Zurück zum Zitat Le Lay, G., Aufray, B., Léandri, C., Oughaddou, H., Biberian, J.P., De Padova, P., Dávila, M.E., Ealet, B., Kara, A.: Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 256, 524–529 (2009) CrossRef Le Lay, G., Aufray, B., Léandri, C., Oughaddou, H., Biberian, J.P., De Padova, P., Dávila, M.E., Ealet, B., Kara, A.: Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 256, 524–529 (2009) CrossRef
20.
Zurück zum Zitat Kamal, C., Chakrabarti, A., Banerjee, A., Deb, S.K.: Silicene beyond mono-layers—different stacking configurations and their properties. ARXIV eprint arXiv:1210.4733 (2012) Kamal, C., Chakrabarti, A., Banerjee, A., Deb, S.K.: Silicene beyond mono-layers—different stacking configurations and their properties. ARXIV eprint arXiv:​1210.​4733 (2012)
21.
Zurück zum Zitat Miller, M., Owens, F.J.: On the possibility of zigzag and armchair silicon nanoribbons having the graphene structure. Chem. Phys. 381, 1–4 (2011) CrossRef Miller, M., Owens, F.J.: On the possibility of zigzag and armchair silicon nanoribbons having the graphene structure. Chem. Phys. 381, 1–4 (2011) CrossRef
22.
Zurück zum Zitat Wang, G.: A theoretical investigation on the carrier mobilities of armchair silicene nanoribbons. ARXIV eprint arXiv:1209.2326 (2012) Wang, G.: A theoretical investigation on the carrier mobilities of armchair silicene nanoribbons. ARXIV eprint arXiv:​1209.​2326 (2012)
23.
Zurück zum Zitat Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B.: Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256, 6313–6317 (2010) CrossRef Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B.: Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256, 6313–6317 (2010) CrossRef
24.
Zurück zum Zitat Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B., Xu, K.W.: First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies. J. Mol. Struct. 990, 75–78 (2011) CrossRef Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B., Xu, K.W.: First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies. J. Mol. Struct. 990, 75–78 (2011) CrossRef
25.
Zurück zum Zitat Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 1–6 (2012) CrossRef Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 1–6 (2012) CrossRef
26.
Zurück zum Zitat Sevinçli, H., Topsakal, M., Ciraci, S.: Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402 (2008) CrossRef Sevinçli, H., Topsakal, M., Ciraci, S.: Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402 (2008) CrossRef
27.
Zurück zum Zitat Sahu, B., Min, H., Banerjee, S.K.: Effects of edge magnetism and external electric field on energy gaps in multilayer graphene nanoribbons. Phys. Rev. B 82, 115426 (2010) CrossRef Sahu, B., Min, H., Banerjee, S.K.: Effects of edge magnetism and external electric field on energy gaps in multilayer graphene nanoribbons. Phys. Rev. B 82, 115426 (2010) CrossRef
28.
Zurück zum Zitat Ding, Y., Ni, J.: Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115 (2009) CrossRef Ding, Y., Ni, J.: Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115 (2009) CrossRef
29.
Zurück zum Zitat Kharche, N., Zhou, Y., O’Brien, K.P., Kar, S., Nayak, S.K.: Effect of layer stacking on the electronic structure of graphene nanoribbons. ACS Nano 5, 6096–6101 (2011) CrossRef Kharche, N., Zhou, Y., O’Brien, K.P., Kar, S., Nayak, S.K.: Effect of layer stacking on the electronic structure of graphene nanoribbons. ACS Nano 5, 6096–6101 (2011) CrossRef
30.
Zurück zum Zitat Ding, Y., Wang, Y.: Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 100, 083102 (2012) CrossRef Ding, Y., Wang, Y.: Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 100, 083102 (2012) CrossRef
31.
Zurück zum Zitat Wang, G.: Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons. Chem. Phys. Lett. 533, 74–77 (2012) CrossRef Wang, G.: Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons. Chem. Phys. Lett. 533, 74–77 (2012) CrossRef
32.
Zurück zum Zitat Kim, J., Fischetti, M.V., Aboud, S.: Structural, electronic, and transport properties of silicane nanoribbons. Phys. Rev. B 86, 205323 (2012) CrossRef Kim, J., Fischetti, M.V., Aboud, S.: Structural, electronic, and transport properties of silicane nanoribbons. Phys. Rev. B 86, 205323 (2012) CrossRef
34.
Zurück zum Zitat Bandyopadhyay, S., Cahay, M.: Introduction to Spintronics. CRC, Boca Raton (2008) Bandyopadhyay, S., Cahay, M.: Introduction to Spintronics. CRC, Boca Raton (2008)
35.
36.
Zurück zum Zitat Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983) CrossRef Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983) CrossRef
37.
Zurück zum Zitat Pramanik, S., Bandyopadhyay, S., Cahay, M.: Spin dephasing in quantum wires. Phys. Rev. B 68, 075313 (2003) CrossRef Pramanik, S., Bandyopadhyay, S., Cahay, M.: Spin dephasing in quantum wires. Phys. Rev. B 68, 075313 (2003) CrossRef
38.
Zurück zum Zitat Saikin, S., Pershin, Y.V., Privman, V.: Modeling for semiconductor spintronics. IEE Proc., Circuits Devices Syst. 152, 366–376 (2005) CrossRef Saikin, S., Pershin, Y.V., Privman, V.: Modeling for semiconductor spintronics. IEE Proc., Circuits Devices Syst. 152, 366–376 (2005) CrossRef
39.
Zurück zum Zitat Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011) CrossRef Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011) CrossRef
40.
Zurück zum Zitat Ezawa, M.: Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012) CrossRef Ezawa, M.: Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012) CrossRef
Metadaten
Titel
Spin transport in N-armchair-edge silicene nanoribbons
verfasst von
Bhupesh Bishnoi
Bahniman Ghosh
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2014
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-013-0498-z

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Electronics 1/2014 Zur Ausgabe

Neuer Inhalt