Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 11/2016

20.07.2016 | Original Paper

Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study

verfasst von: Yu-Feng Wang, Qiang Xu, Qian-Gong Cheng, Yan Li, Zhong-Xu Luo

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bagnold RA (1954) Experiments on gravity-free dispersion of large solid sphere in a Newtonian fluid under shear. Proc R Soc 225(1160):49–63CrossRef Bagnold RA (1954) Experiments on gravity-free dispersion of large solid sphere in a Newtonian fluid under shear. Proc R Soc 225(1160):49–63CrossRef
Zurück zum Zitat Bartali R, Sarocchi D, Nahmad-Molinari Y (2015) Stick-slip motion and high speed ejecta in granular avalanches detected through a multi-sensors flume. Eng Geol 195:248–257CrossRef Bartali R, Sarocchi D, Nahmad-Molinari Y (2015) Stick-slip motion and high speed ejecta in granular avalanches detected through a multi-sensors flume. Eng Geol 195:248–257CrossRef
Zurück zum Zitat Boultbee N, Stead D, Schwab J et al (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83(1–3):76–93CrossRef Boultbee N, Stead D, Schwab J et al (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83(1–3):76–93CrossRef
Zurück zum Zitat Brantut N, Schubnel A, Rouzaud JN et al (2008) High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. J Geophys Res 113(B10401):1–18 Brantut N, Schubnel A, Rouzaud JN et al (2008) High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. J Geophys Res 113(B10401):1–18
Zurück zum Zitat Bryant SK, Take WA, Bowman ET (2015a) Observations of grain-scale interactions and simulation of dry granular flows in a large-scale flume. Can Geotech J 52(5):638–655CrossRef Bryant SK, Take WA, Bowman ET (2015a) Observations of grain-scale interactions and simulation of dry granular flows in a large-scale flume. Can Geotech J 52(5):638–655CrossRef
Zurück zum Zitat Bryant SK, Take WA, Bowman ET et al (2015b) Physical and numerical modelling of dry granular flows under Coriolis conditions. Géotechnique 65(3):188–200CrossRef Bryant SK, Take WA, Bowman ET et al (2015b) Physical and numerical modelling of dry granular flows under Coriolis conditions. Géotechnique 65(3):188–200CrossRef
Zurück zum Zitat Cagnoli B, Piersanti A (2015) Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete element modeling of flows of angular rock fragments. J Geophys Res 120(4):2350–2366CrossRef Cagnoli B, Piersanti A (2015) Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete element modeling of flows of angular rock fragments. J Geophys Res 120(4):2350–2366CrossRef
Zurück zum Zitat Cagnoli B, Romano GP (2010) Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: experimental results. J Volcanol Geoth Res 196(3–4):236–244CrossRef Cagnoli B, Romano GP (2010) Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: experimental results. J Volcanol Geoth Res 196(3–4):236–244CrossRef
Zurück zum Zitat Cagnoli B, Romano GP (2012) Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: a relationship from laboratory experiments. J Geophys Res 117(B10):1–12CrossRef Cagnoli B, Romano GP (2012) Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: a relationship from laboratory experiments. J Geophys Res 117(B10):1–12CrossRef
Zurück zum Zitat Choi CE, Au-Yeung SCH, Ng CWW et al (2015) Flume investigation of landslide granular debris and water runup mechanisms. Géotech Lett 5:28–32CrossRef Choi CE, Au-Yeung SCH, Ng CWW et al (2015) Flume investigation of landslide granular debris and water runup mechanisms. Géotech Lett 5:28–32CrossRef
Zurück zum Zitat Cox SC, Allen SK (2009) Vampire rock avalanches of January 2008 and 2003, Southern Alps, New Zealand. Landslides 6(2):161–166CrossRef Cox SC, Allen SK (2009) Vampire rock avalanches of January 2008 and 2003, Southern Alps, New Zealand. Landslides 6(2):161–166CrossRef
Zurück zum Zitat Cruden DM, Lu ZY (1992) The rockslide and debris flow from Mount Cayley, B.C., in June 1984. Can Geotech J 29(4):614–626CrossRef Cruden DM, Lu ZY (1992) The rockslide and debris flow from Mount Cayley, B.C., in June 1984. Can Geotech J 29(4):614–626CrossRef
Zurück zum Zitat Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides-investigation and mitigation. National Academy Press, Washington, pp 36–75 Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides-investigation and mitigation. National Academy Press, Washington, pp 36–75
Zurück zum Zitat Dai FC, Tu XB, Xu C et al (2011) Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China. Geomorphology 132(3–4):300–318CrossRef Dai FC, Tu XB, Xu C et al (2011) Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China. Geomorphology 132(3–4):300–318CrossRef
Zurück zum Zitat Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24CrossRef Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24CrossRef
Zurück zum Zitat Davies TRH, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36(6):1096–1110CrossRef Davies TRH, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36(6):1096–1110CrossRef
Zurück zum Zitat Deline P, Alberto W, Broccolato M et al (2011) The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy. Nat Hazards Earth Syst Sci 11(12):3307–3318CrossRef Deline P, Alberto W, Broccolato M et al (2011) The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy. Nat Hazards Earth Syst Sci 11(12):3307–3318CrossRef
Zurück zum Zitat Drake TG (1991) Granular flow: physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152CrossRef Drake TG (1991) Granular flow: physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152CrossRef
Zurück zum Zitat Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Proc Land 37(14):1527–1541CrossRef Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Proc Land 37(14):1527–1541CrossRef
Zurück zum Zitat Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105(3–4):171–181CrossRef Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105(3–4):171–181CrossRef
Zurück zum Zitat Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levees in pyroclastic deposits. Earth Planet Sci Lett 221(1–4):197–213CrossRef Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levees in pyroclastic deposits. Earth Planet Sci Lett 221(1–4):197–213CrossRef
Zurück zum Zitat Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci 95(5):911–919CrossRef Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci 95(5):911–919CrossRef
Zurück zum Zitat George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proc R Soc A 470(2170):1–31CrossRef George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proc R Soc A 470(2170):1–31CrossRef
Zurück zum Zitat Habib P (1975) Production of gaseous pore pressure during rock slides. Rock Mech 7(4):193–197CrossRef Habib P (1975) Production of gaseous pore pressure during rock slides. Rock Mech 7(4):193–197CrossRef
Zurück zum Zitat Hadley JB (1978) Madison Canyon rockslide, Montana, U.S.A. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, pp 167–180CrossRef Hadley JB (1978) Madison Canyon rockslide, Montana, U.S.A. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, pp 167–180CrossRef
Zurück zum Zitat Heim A (1932) Landslides and human lives. Bitech Publishers, Vancouver, pp 93–94 Heim A (1932) Landslides and human lives. Bitech Publishers, Vancouver, pp 93–94
Zurück zum Zitat Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Bull Geol Soc Am 86(1):225–256CrossRef Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Bull Geol Soc Am 86(1):225–256CrossRef
Zurück zum Zitat Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos Trans R Soc Lond Ser A 334(1633):93–138CrossRef Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos Trans R Soc Lond Ser A 334(1633):93–138CrossRef
Zurück zum Zitat Iverson RM (2015) Scaling and design of landslide and debris-flow experiments. Geomorphology 244:9–20CrossRef Iverson RM (2015) Scaling and design of landslide and debris-flow experiments. Geomorphology 244:9–20CrossRef
Zurück zum Zitat Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J Geophys Res 109(F1):1–11CrossRef Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J Geophys Res 109(F1):1–11CrossRef
Zurück zum Zitat Iverson RM, Logan M, LaHusen RG et al (2010a) The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res 115(F3):1–29CrossRef Iverson RM, Logan M, LaHusen RG et al (2010a) The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res 115(F3):1–29CrossRef
Zurück zum Zitat Iverson RM, Reid ME, Logan M et al (2010b) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121CrossRef Iverson RM, Reid ME, Logan M et al (2010b) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121CrossRef
Zurück zum Zitat Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng 46(4):713–729CrossRef Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng 46(4):713–729CrossRef
Zurück zum Zitat Johnson CG, Kokelaar BP, Iverson RM et al (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117(F01032):1–23 Johnson CG, Kokelaar BP, Iverson RM et al (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117(F01032):1–23
Zurück zum Zitat Keefer DK, Larsen MC (2007) Assessing landslide hazards. Science 316(5828):1136–1138CrossRef Keefer DK, Larsen MC (2007) Assessing landslide hazards. Science 316(5828):1136–1138CrossRef
Zurück zum Zitat Kent PE (1966) The transport mechanism in catastrophic rock falls. J Geol 74(1):79–83CrossRef Kent PE (1966) The transport mechanism in catastrophic rock falls. J Geol 74(1):79–83CrossRef
Zurück zum Zitat Kobayashi Y (1994) Effect on basal guided waves on landslides. Pure Appl Geophys 142(2):329–346CrossRef Kobayashi Y (1994) Effect on basal guided waves on landslides. Pure Appl Geophys 142(2):329–346CrossRef
Zurück zum Zitat Kokelaar BP, Graham RL, Gray JMNT et al (2014) Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet Sci Lett 385:172–180CrossRef Kokelaar BP, Graham RL, Gray JMNT et al (2014) Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet Sci Lett 385:172–180CrossRef
Zurück zum Zitat Kokusho T, Hiraga Y (2012) Dissipated energies and friction coefficients in granular flow by flume tests. Soils Found 52(2):356–367CrossRef Kokusho T, Hiraga Y (2012) Dissipated energies and friction coefficients in granular flow by flume tests. Soils Found 52(2):356–367CrossRef
Zurück zum Zitat Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3):301–331CrossRef Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3):301–331CrossRef
Zurück zum Zitat Longchamp C, Abellan A, Jaboyedoff M et al (2015) 3-D models and structural analysis of analogue rock avalanche deposits: a kinematic analysis of the propagation mechanism. Earth Surf Dyn Discuss 3(4):1255–1288CrossRef Longchamp C, Abellan A, Jaboyedoff M et al (2015) 3-D models and structural analysis of analogue rock avalanche deposits: a kinematic analysis of the propagation mechanism. Earth Surf Dyn Discuss 3(4):1255–1288CrossRef
Zurück zum Zitat Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can Geotech J 47(8):827–841CrossRef Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can Geotech J 47(8):827–841CrossRef
Zurück zum Zitat Mangeney A, Roche O, Hungr O et al (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res 115(F3):1–23CrossRef Mangeney A, Roche O, Hungr O et al (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res 115(F3):1–23CrossRef
Zurück zum Zitat Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41(1):133–151CrossRef Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41(1):133–151CrossRef
Zurück zum Zitat Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158CrossRef Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158CrossRef
Zurück zum Zitat Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10(1):23–36CrossRef Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10(1):23–36CrossRef
Zurück zum Zitat McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three dimensional terrain. Can Geotech J 41(6):1084–1097CrossRef McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three dimensional terrain. Can Geotech J 41(6):1084–1097CrossRef
Zurück zum Zitat Melosh HJ (1986) The physics of very large landslides. Acta Mech 64(1–2):89–99CrossRef Melosh HJ (1986) The physics of very large landslides. Acta Mech 64(1–2):89–99CrossRef
Zurück zum Zitat Nicoletti PG, Sorriso-Valvo M (1991) Geomorphic controls of the shape and mobility of rock avalanches. Geol Soc Am Bull 103(10):1365–1373CrossRef Nicoletti PG, Sorriso-Valvo M (1991) Geomorphic controls of the shape and mobility of rock avalanches. Geol Soc Am Bull 103(10):1365–1373CrossRef
Zurück zum Zitat Okada Y, Uchida I (2014) Dependence of runout distance on the number of rock blocks in large-scale rock-mass failure experiments. J For Res 19(3):329–339CrossRef Okada Y, Uchida I (2014) Dependence of runout distance on the number of rock blocks in large-scale rock-mass failure experiments. J For Res 19(3):329–339CrossRef
Zurück zum Zitat Okura Y, Kitahara H, Sammori T (2000) Fluidization in dry landslides. Eng Geol 56(3):347–360CrossRef Okura Y, Kitahara H, Sammori T (2000) Fluidization in dry landslides. Eng Geol 56(3):347–360CrossRef
Zurück zum Zitat Ostermann M, Sanders D, Ivy-Ochs S et al (2012) Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement. Geomorphology 171–172:83–93CrossRef Ostermann M, Sanders D, Ivy-Ochs S et al (2012) Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement. Geomorphology 171–172:83–93CrossRef
Zurück zum Zitat Paguican EM, Vries BVWD, Lagmay A (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11(1):67–80CrossRef Paguican EM, Vries BVWD, Lagmay A (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11(1):67–80CrossRef
Zurück zum Zitat Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11(3):542–548CrossRef Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11(3):542–548CrossRef
Zurück zum Zitat Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132CrossRef Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132CrossRef
Zurück zum Zitat Pudasaini SP, Hsiau SS, Wang YQ et al (2005) Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys Fluids 17(9):1–10CrossRef Pudasaini SP, Hsiau SS, Wang YQ et al (2005) Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys Fluids 17(9):1–10CrossRef
Zurück zum Zitat Pudasaini SP, Wang YQ, Sheng LT et al (2008) Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys Fluids 20(7):073302–073312CrossRef Pudasaini SP, Wang YQ, Sheng LT et al (2008) Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys Fluids 20(7):073302–073312CrossRef
Zurück zum Zitat Scheidl C, McArdell BW, Rickenmann R (2015) Debris-flow velocities and superelevation in a curved laboratory channel. Can Geotech J 52(3):305–317CrossRef Scheidl C, McArdell BW, Rickenmann R (2015) Debris-flow velocities and superelevation in a curved laboratory channel. Can Geotech J 52(3):305–317CrossRef
Zurück zum Zitat Shea T, Vries BVWD (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4(4):657–686CrossRef Shea T, Vries BVWD (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4(4):657–686CrossRef
Zurück zum Zitat Shreve RL (1968) Leakage and fluidization in air-lubricated avalanches. Geol Soc Am Bull 79(5):653–658CrossRef Shreve RL (1968) Leakage and fluidization in air-lubricated avalanches. Geol Soc Am Bull 79(5):653–658CrossRef
Zurück zum Zitat Turnbull B, Bowman ET, McElwaine JN (2015) Debris flows: experiments and modelling. C R Phys 16:86–96CrossRef Turnbull B, Bowman ET, McElwaine JN (2015) Debris flows: experiments and modelling. C R Phys 16:86–96CrossRef
Zurück zum Zitat Wang FW, Cheng QG, Highland L et al (2009) Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 6(1):47–54CrossRef Wang FW, Cheng QG, Highland L et al (2009) Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 6(1):47–54CrossRef
Zurück zum Zitat Wang YF, Cheng QG, Zhu Q (2012) Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake. Chin J Rock Mech Eng 31(6):1089–1106 (in Chinese) Wang YF, Cheng QG, Zhu Q (2012) Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake. Chin J Rock Mech Eng 31(6):1089–1106 (in Chinese)
Zurück zum Zitat Wang GH, Huang RQ, Chigira M et al (2013) Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) earthquake, China. Earth Surf Proc Land 38(3):265–274CrossRef Wang GH, Huang RQ, Chigira M et al (2013) Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) earthquake, China. Earth Surf Proc Land 38(3):265–274CrossRef
Zurück zum Zitat Wang YF, Cheng QG, Zhu Q (2015) Surface microscopic examinations of quartz grains from rock avalanche basal travel zones. Can Geotech J 52(2):167–181CrossRef Wang YF, Cheng QG, Zhu Q (2015) Surface microscopic examinations of quartz grains from rock avalanche basal travel zones. Can Geotech J 52(2):167–181CrossRef
Zurück zum Zitat Weidinger JT, Korup O (2009) Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—implications for extreme events in mountain relief destruction. Geomorphology 103(1):57–65CrossRef Weidinger JT, Korup O (2009) Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—implications for extreme events in mountain relief destruction. Geomorphology 103(1):57–65CrossRef
Zurück zum Zitat Xu Q, Shang YJ, Asch TV et al (2012) Observations from the large, rapid Yigong rock slide-debris avalanche, southeast Tibet. Can Geotech J 49(5):589–606CrossRef Xu Q, Shang YJ, Asch TV et al (2012) Observations from the large, rapid Yigong rock slide-debris avalanche, southeast Tibet. Can Geotech J 49(5):589–606CrossRef
Zurück zum Zitat Yang QQ, Cai F, Ugai K et al (2011) Some factors affecting the frontal velocity of rapid dry granular flows in a large flume. Eng Geol 122(3–4):249–260CrossRef Yang QQ, Cai F, Ugai K et al (2011) Some factors affecting the frontal velocity of rapid dry granular flows in a large flume. Eng Geol 122(3–4):249–260CrossRef
Zurück zum Zitat Yin YP, Sun P, Zhang M et al (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8(1):49–65CrossRef Yin YP, Sun P, Zhang M et al (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8(1):49–65CrossRef
Zurück zum Zitat Zhang M, Yin YP (2013) Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Eng Geol 167:37–58CrossRef Zhang M, Yin YP (2013) Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Eng Geol 167:37–58CrossRef
Metadaten
Titel
Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study
verfasst von
Yu-Feng Wang
Qiang Xu
Qian-Gong Cheng
Yan Li
Zhong-Xu Luo
Publikationsdatum
20.07.2016
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 11/2016
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-1052-7

Weitere Artikel der Ausgabe 11/2016

Rock Mechanics and Rock Engineering 11/2016 Zur Ausgabe