Skip to main content
Erschienen in: Microsystem Technologies 5/2016

23.12.2015 | Technical Paper

Stability effect of some organic and inorganic additions in the EMITFSI–LiTFSI nanocomposite electrolytes for lithium-air batteries

verfasst von: A. Akbulut Uludağ, H. Akbulut, M. Tokur, H. Algül, T. Çetinkaya, M. Uysal

Erschienen in: Microsystem Technologies | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the EMITFSI/LiTFSI electrolyte possess low viscosity, high ionic conductivity and thermal stability properties, in this study, 1M 1-ethyl-3-methyl-imidazoliumbis (trifluoromethanesulfonyl) imide (EMITFSI)/Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) based electrolytes were studied for Li-air battery cells. A series of electrolytes was studied with organic compound additions of Poly(ethylene oxide) (PEO) and polyvinylidene fluoride (PVDF). Nano Al2O3 particles with 50 nm in size were also used in 1.0 wt% as inorganic additive to provide stability of the polymer added electrolytes. The nanocomposite electrolytes were prepared in a glove box under dry argon atmosphere. Porous electrode, Gas Diffusion Layer (GDL), was used as cathode, a lithium disk was used as anode while glass fiber was used as the separator in ECC-air test cell. The cells were cyclically tested using 0.1 mA/cm2 current density over a voltage range of 1.5–4.5 V. Electrochemical impedance spectroscopy measurements was applied to investigate the effect of the PVDF/Al2O3 and PEO/Al2O3 nano additives on the resistivity of the electrolyte. After the electrochemical cycling test, the morphologies of the cathodes (GDL) were analyzed using scanning electron microscopy, X-ray diffraction analysis to determine reaction products and lithium compounds during cycling test.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Appetecchi GB, Kim GT, Montanino M, Alessandrini F, Passerini S (2011) Room temperature lithium polymer batteries based on ionic liquids. J Power Sour 196:6703–6709CrossRef Appetecchi GB, Kim GT, Montanino M, Alessandrini F, Passerini S (2011) Room temperature lithium polymer batteries based on ionic liquids. J Power Sour 196:6703–6709CrossRef
Zurück zum Zitat Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids: electrodes and electrolytes. North-Holland, New York, p 131 Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids: electrodes and electrolytes. North-Holland, New York, p 131
Zurück zum Zitat Benbow EM, Kelly SP, Zhao L, Reutenauer JW, Suib SL (2011) Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J Phys Chem C 115:22009–22017CrossRef Benbow EM, Kelly SP, Zhao L, Reutenauer JW, Suib SL (2011) Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J Phys Chem C 115:22009–22017CrossRef
Zurück zum Zitat Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed 52:392–396CrossRef Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed 52:392–396CrossRef
Zurück zum Zitat Boor SL, Yarjan AS, Raed H (2014) Ternary polymer electrolyte with enhanced ionic conductivity and thermo-mechanical properties for lithium-ion batteries. Int J Hydrog Energy 39:2964–2970CrossRef Boor SL, Yarjan AS, Raed H (2014) Ternary polymer electrolyte with enhanced ionic conductivity and thermo-mechanical properties for lithium-ion batteries. Int J Hydrog Energy 39:2964–2970CrossRef
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(02):172CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(02):172CrossRef
Zurück zum Zitat Capsoni D, Bini M, Ferrari S, Quartarone EP (2012) Recent advances in the development of Li-air batteries. J Power Sour 220:253–263CrossRef Capsoni D, Bini M, Ferrari S, Quartarone EP (2012) Recent advances in the development of Li-air batteries. J Power Sour 220:253–263CrossRef
Zurück zum Zitat Cetinkaya T, Ozcan S, Uysal M, Guler MO, Akbulut H (2014a) Free-standing flexible graphene oxide paper electrode for rechargeable Li–O2 batteries. J Power Sour 267:140–147CrossRef Cetinkaya T, Ozcan S, Uysal M, Guler MO, Akbulut H (2014a) Free-standing flexible graphene oxide paper electrode for rechargeable Li–O2 batteries. J Power Sour 267:140–147CrossRef
Zurück zum Zitat Cetinkaya T, Akbulut A, Guler MO, Akbulut H (2014b) A different method for producing a flexible LiMn2O4/MWCNT composite electrode for lithium ion batteries. J Appl Electrochem 44:209–214CrossRef Cetinkaya T, Akbulut A, Guler MO, Akbulut H (2014b) A different method for producing a flexible LiMn2O4/MWCNT composite electrode for lithium ion batteries. J Appl Electrochem 44:209–214CrossRef
Zurück zum Zitat Eduard N, Wu X, Mark HE, Zimin N, Sarah DB, Lelia C, Mark EG, Ji-Guang Z (2013) Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C 117:2635–2645CrossRef Eduard N, Wu X, Mark HE, Zimin N, Sarah DB, Lelia C, Mark EG, Ji-Guang Z (2013) Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C 117:2635–2645CrossRef
Zurück zum Zitat Erwan C, Johan J, Hervé G, Christopher H, Mérièm A (2013) A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents. J Phys Chem B 117:1389–1402CrossRef Erwan C, Johan J, Hervé G, Christopher H, Mérièm A (2013) A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents. J Phys Chem B 117:1389–1402CrossRef
Zurück zum Zitat Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef
Zurück zum Zitat Ferrari S, Quartarone E, Tomasi C, Bini M, Galinetto P, Fagnoni M, Mustarelli P (2015) Investigation of ether-based ionic liquid electrolytes for lithium-O2 batteries. J Electrochem Soc 162(2):A3001–A3006CrossRef Ferrari S, Quartarone E, Tomasi C, Bini M, Galinetto P, Fagnoni M, Mustarelli P (2015) Investigation of ether-based ionic liquid electrolytes for lithium-O2 batteries. J Electrochem Soc 162(2):A3001–A3006CrossRef
Zurück zum Zitat Girish KG, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef Girish KG, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef
Zurück zum Zitat Gurevitch I, Buonsanti R, Teran AA, Gludovatz B, Ritchie RO, Cabana J, Balsara NP (2013) Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J Electrochem Soc 160:A1611–A1617CrossRef Gurevitch I, Buonsanti R, Teran AA, Gludovatz B, Ritchie RO, Cabana J, Balsara NP (2013) Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J Electrochem Soc 160:A1611–A1617CrossRef
Zurück zum Zitat Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO) LiTFSI polymer electrolyte system. Electrochim Acta 47:3257–3268CrossRef Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO) LiTFSI polymer electrolyte system. Electrochim Acta 47:3257–3268CrossRef
Zurück zum Zitat Jiajun W, Yongliang L, Xueliang S (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2:443–467CrossRef Jiajun W, Yongliang L, Xueliang S (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2:443–467CrossRef
Zurück zum Zitat Jonathon RH, Chibueze VA, Paula TH, Yang SH (2015) Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries. J Phys Chem C 119:6947–6955CrossRef Jonathon RH, Chibueze VA, Paula TH, Yang SH (2015) Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries. J Phys Chem C 119:6947–6955CrossRef
Zurück zum Zitat Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585CrossRef Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585CrossRef
Zurück zum Zitat Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 7:3532–3539CrossRef Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 7:3532–3539CrossRef
Zurück zum Zitat Juqin Z, Jijeesh RN, Carlotta F, Silvia B, Nerino P (2013) Li–O2 cells based on hierarchically structured porous α-MnO2 catalyst and an imidazolium based ionic liquid electrolyte. Int J Electrochem Sci 8:3912–3927 Juqin Z, Jijeesh RN, Carlotta F, Silvia B, Nerino P (2013) Li–O2 cells based on hierarchically structured porous α-MnO2 catalyst and an imidazolium based ionic liquid electrolyte. Int J Electrochem Sci 8:3912–3927
Zurück zum Zitat Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sour 146:766–769CrossRef Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sour 146:766–769CrossRef
Zurück zum Zitat Liwei Z, Jun-ichi Y, Minato E (2007) Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J Power Sour 174:352–358CrossRef Liwei Z, Jun-ichi Y, Minato E (2007) Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J Power Sour 174:352–358CrossRef
Zurück zum Zitat Lu J, Li L, Park JB, Sun YK, Wu F, Amine K (2014) Aprotic and Aqueous Li–O2 Batteries. Chem Rev 114:5611–5640CrossRef Lu J, Li L, Park JB, Sun YK, Wu F, Amine K (2014) Aprotic and Aqueous Li–O2 Batteries. Chem Rev 114:5611–5640CrossRef
Zurück zum Zitat Manuel SA, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRef Manuel SA, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRef
Zurück zum Zitat Marinaro M, Theil S, Joerissen L, Wohlfahrt-Mehrens M (2013a) New insights about the stability of lithium bis(trifluoromethane)sulfonimide-tetraglyme as electrolyte for Li–O2 batteries. Electrochim Acta 108:795–800CrossRef Marinaro M, Theil S, Joerissen L, Wohlfahrt-Mehrens M (2013a) New insights about the stability of lithium bis(trifluoromethane)sulfonimide-tetraglyme as electrolyte for Li–O2 batteries. Electrochim Acta 108:795–800CrossRef
Zurück zum Zitat Marinaro M, Moorthy SKE, Bernhard J, Jörisses L, Mehrens MW, Kaiser BU (2013b) Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries. Beilstein J Nanotechnol 4:665–670CrossRef Marinaro M, Moorthy SKE, Bernhard J, Jörisses L, Mehrens MW, Kaiser BU (2013b) Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries. Beilstein J Nanotechnol 4:665–670CrossRef
Zurück zum Zitat Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48:1148–1154CrossRef Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48:1148–1154CrossRef
Zurück zum Zitat Moran B, Alexander K, Yair E (2014) A critical review on lithium-air battery electrolytes. Phys Chem 16:2801–2822 Moran B, Alexander K, Yair E (2014) A critical review on lithium-air battery electrolytes. Phys Chem 16:2801–2822
Zurück zum Zitat Nelson R, Weatherspoon MH, Gomez J, Kalu EE, Zheng JP (2013) Investigation of a Li–O2 cell featuring a binder-free cathode via impedance spectroscopy and equivalent circuit model analysis. Electrochem Commun 34:77–80CrossRef Nelson R, Weatherspoon MH, Gomez J, Kalu EE, Zheng JP (2013) Investigation of a Li–O2 cell featuring a binder-free cathode via impedance spectroscopy and equivalent circuit model analysis. Electrochem Commun 34:77–80CrossRef
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
Zurück zum Zitat Ravi M, Kumar KK, Madhu VM, Rao VVRN (2014) Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polym Test 33:152–160CrossRef Ravi M, Kumar KK, Madhu VM, Rao VVRN (2014) Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polym Test 33:152–160CrossRef
Zurück zum Zitat Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ion 86(8):49–54CrossRef Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ion 86(8):49–54CrossRef
Zurück zum Zitat Wang DY, Dahn JR (2014) A high precision study of electrolyte additive combinations containing vinylene carbonate, ethylene sulfate, tris(trimethylsilyl) phosphate and tris(trimethylsilyl) phosphite in li[Ni1/3Mn1/3Co1/3]O2/graphite pouch cells. J Electrochem Soc 161(12):A1890–A1897CrossRef Wang DY, Dahn JR (2014) A high precision study of electrolyte additive combinations containing vinylene carbonate, ethylene sulfate, tris(trimethylsilyl) phosphate and tris(trimethylsilyl) phosphite in li[Ni1/3Mn1/3Co1/3]O2/graphite pouch cells. J Electrochem Soc 161(12):A1890–A1897CrossRef
Zurück zum Zitat Wang H, Xie K, Wang L, Han Y (2012) N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries. J Power Sour 219:263–271CrossRef Wang H, Xie K, Wang L, Han Y (2012) N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries. J Power Sour 219:263–271CrossRef
Zurück zum Zitat Wen SY, Wei-Fan K, Epps TH III (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci, Part B: Polym Phys 52:1–16CrossRef Wen SY, Wei-Fan K, Epps TH III (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci, Part B: Polym Phys 52:1–16CrossRef
Zurück zum Zitat Wesley W, Vincent G, Jasim U, Vyacheslav S, Gregory V, Dan A (2013) A rechargeable Li–O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte. J Am Chem Soc 135:2076–2079CrossRef Wesley W, Vincent G, Jasim U, Vyacheslav S, Gregory V, Dan A (2013) A rechargeable Li–O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte. J Am Chem Soc 135:2076–2079CrossRef
Zurück zum Zitat Wieczorek K, Steven JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion 85:67–72CrossRef Wieczorek K, Steven JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion 85:67–72CrossRef
Zurück zum Zitat Wu J, Park HW, Yu A, Higgins D, Chen Z (2012) Facile synthesis and evaluation of nanofibrous iron–carbon based non-precious oxygen reduction reaction catalysts for Li–O2 battery applications. J Phys Chem C 116:9427–9432CrossRef Wu J, Park HW, Yu A, Higgins D, Chen Z (2012) Facile synthesis and evaluation of nanofibrous iron–carbon based non-precious oxygen reduction reaction catalysts for Li–O2 battery applications. J Phys Chem C 116:9427–9432CrossRef
Zurück zum Zitat Yang J, Zhai D, Wang HH, Lau KC, Schlueter JA, Du P, Myers DJ, Sun YK, Curtiss LA, Amine K (2013) Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Phys Chem Chem Phys 15:3764–3771CrossRef Yang J, Zhai D, Wang HH, Lau KC, Schlueter JA, Du P, Myers DJ, Sun YK, Curtiss LA, Amine K (2013) Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Phys Chem Chem Phys 15:3764–3771CrossRef
Zurück zum Zitat Zeng J, Nair JR, Francia C, Bodoardo S, Penazzi N (2014) Aprotic Li–O2 cells: gas diffusion layer (GDL) as catalyst free cathode and tetraglyme/LiClO4 as electrolyte. Solid State Ion 262:160–164CrossRef Zeng J, Nair JR, Francia C, Bodoardo S, Penazzi N (2014) Aprotic Li–O2 cells: gas diffusion layer (GDL) as catalyst free cathode and tetraglyme/LiClO4 as electrolyte. Solid State Ion 262:160–164CrossRef
Zurück zum Zitat Zhaohui L, Guangyao S, Deshu G, Xiayu W, Xiaoping L (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639CrossRef Zhaohui L, Guangyao S, Deshu G, Xiayu W, Xiaoping L (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639CrossRef
Metadaten
Titel
Stability effect of some organic and inorganic additions in the EMITFSI–LiTFSI nanocomposite electrolytes for lithium-air batteries
verfasst von
A. Akbulut Uludağ
H. Akbulut
M. Tokur
H. Algül
T. Çetinkaya
M. Uysal
Publikationsdatum
23.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2765-3

Weitere Artikel der Ausgabe 5/2016

Microsystem Technologies 5/2016 Zur Ausgabe

Neuer Inhalt