Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2021

12.04.2021

Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance

verfasst von: Fangfang Liu, Xiuyun Chuan, Yang Yang, Dubin Huang, Xin He

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid-state lithium batteries using solid-state electrolytes (SSE) improve both thermal stability and energy density compared with organic liquid electrolytes lithium-ion batteries (LIBs). However, their usage is still challenged by low lithium-ion conductivity and high interfacial resistance between SSE and electrodes, as well as difficulties running at room temperature (RT). Herein, we demonstrate an electrode/solid-state electrolyte interface, in which poly(ether-acrylate) (PEA) network was introduced on the surface of ceramic electrolytes via photo-polymerization, thus dramatically reducing the SSE/Li interfacial resistance from 4822 to 122 Ω cm2. As a result, the Li/Li cells can cycle over 500 h at 0.3 mA cm−2, LiFePO4/Li delivers 200 cycles with capacity retention of 91.1% at RT, respectively. This research provides a method to improve the interface contact between SSE and electrodes, and offers possibilities for application of solid-state Li metal batteries under ambient condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M.S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chem. Rev., 2014, 114, p 11414–11443.CrossRef M.S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chem. Rev., 2014, 114, p 11414–11443.CrossRef
2.
Zurück zum Zitat J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang and Y. Lu, Electrochemical Surface Passivation of LiCoO2 Particles at Ultrahigh Voltage and its Applications in Lithium-Based Batteries, Nat. Commun., 2018, 9, p p4918.CrossRef J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang and Y. Lu, Electrochemical Surface Passivation of LiCoO2 Particles at Ultrahigh Voltage and its Applications in Lithium-Based Batteries, Nat. Commun., 2018, 9, p p4918.CrossRef
3.
Zurück zum Zitat F. Zheng, M. Kotobuki, S. Song, M.O. Lai and L. Lu, Review on Solid Electrolytes for all-Solid-State Lithium-Ion Batteries, J. Power Sources, 2018, 389, p 198–213.CrossRef F. Zheng, M. Kotobuki, S. Song, M.O. Lai and L. Lu, Review on Solid Electrolytes for all-Solid-State Lithium-Ion Batteries, J. Power Sources, 2018, 389, p 198–213.CrossRef
4.
Zurück zum Zitat E.A. Olivetti, G. Ceder, G.G. Gaustad and X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, 2017, 1, p 229–243.CrossRef E.A. Olivetti, G. Ceder, G.G. Gaustad and X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, 2017, 1, p 229–243.CrossRef
5.
Zurück zum Zitat M. Li, J. Lu, Z. Chen and K. Amine, 30 Years of Lithium-Ion Batteries, Adv. Mater., 2018, 30, p p1800561.CrossRef M. Li, J. Lu, Z. Chen and K. Amine, 30 Years of Lithium-Ion Batteries, Adv. Mater., 2018, 30, p p1800561.CrossRef
6.
Zurück zum Zitat D. Lin, Y. Liu and Y. Cui, Reviving the Lithium Metal Anode for High-Energy Batteries, Nat. Nanotechnol., 2017, 12, p p194.CrossRef D. Lin, Y. Liu and Y. Cui, Reviving the Lithium Metal Anode for High-Energy Batteries, Nat. Nanotechnol., 2017, 12, p p194.CrossRef
7.
Zurück zum Zitat J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang and W. Xu, Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries, Nat. Energy, 2017, 2, p p17012.CrossRef J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang and W. Xu, Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries, Nat. Energy, 2017, 2, p p17012.CrossRef
8.
Zurück zum Zitat C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong and E.D. Wachsman, Continuous Plating/Stripping Behavior of Solid-State Lithium Metal Anode in a 3D Ion-Conductive Framework, Proc. Natl. Acad. Sci., 2018, 115, p 3770–3775.CrossRef C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong and E.D. Wachsman, Continuous Plating/Stripping Behavior of Solid-State Lithium Metal Anode in a 3D Ion-Conductive Framework, Proc. Natl. Acad. Sci., 2018, 115, p 3770–3775.CrossRef
9.
Zurück zum Zitat S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao and Q. Li, Stable Cycling of High-Voltage Lithium Metal Batteries in Ether Electrolytes, Nat. Energy, 2018, 3, p p739.CrossRef S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao and Q. Li, Stable Cycling of High-Voltage Lithium Metal Batteries in Ether Electrolytes, Nat. Energy, 2018, 3, p p739.CrossRef
10.
Zurück zum Zitat E. Markevich, G. Salitra and D. Aurbach, Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries, ACS Energy Lett., 2017, 2, p 1337–1345.CrossRef E. Markevich, G. Salitra and D. Aurbach, Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries, ACS Energy Lett., 2017, 2, p 1337–1345.CrossRef
11.
Zurück zum Zitat Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang, J.-W. Yan, M.-S. Zheng, D.-Y. Wu, C.-H. Fan and W.-Q. Hu, Designable Ultra-Smooth Ultra-Thin Solid-Electrolyte Interphases of Three Alkali Metal Anodes, Nat. Commun., 2018, 9, p p1339.CrossRef Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang, J.-W. Yan, M.-S. Zheng, D.-Y. Wu, C.-H. Fan and W.-Q. Hu, Designable Ultra-Smooth Ultra-Thin Solid-Electrolyte Interphases of Three Alkali Metal Anodes, Nat. Commun., 2018, 9, p p1339.CrossRef
12.
Zurück zum Zitat Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt and Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv. Mater., 2017, 29, p p1605531.CrossRef Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt and Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv. Mater., 2017, 29, p p1605531.CrossRef
13.
Zurück zum Zitat Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode, Nat. Commun., 2016, 7, p p10992.CrossRef Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode, Nat. Commun., 2016, 7, p p10992.CrossRef
14.
Zurück zum Zitat F. Zhou, Z. Li, Y.-Y. Lu, B. Shen, Y. Guan, X.-X. Wang, Y.-C. Yin, B.-S. Zhu, L.-L. Lu and Y. Ni, Diatomite Derived Hierarchical Hybrid Anode for High Performance all-Solid-State Lithium Metal Batteries, Nat. Commun., 2019, 10, p p2482.CrossRef F. Zhou, Z. Li, Y.-Y. Lu, B. Shen, Y. Guan, X.-X. Wang, Y.-C. Yin, B.-S. Zhu, L.-L. Lu and Y. Ni, Diatomite Derived Hierarchical Hybrid Anode for High Performance all-Solid-State Lithium Metal Batteries, Nat. Commun., 2019, 10, p p2482.CrossRef
15.
Zurück zum Zitat W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin and Y. Mo, Reducing Interfacial Resistance Between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer, Adv. Mater., 2017, 29, p p1606042.CrossRef W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin and Y. Mo, Reducing Interfacial Resistance Between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer, Adv. Mater., 2017, 29, p p1606042.CrossRef
16.
Zurück zum Zitat S.A. Pervez, M.A. Cambaz, V. Thangadurai and M. Fichtner, Interface in Solid-State Li Battery: Challenges, ACS Applied Materials & Interfaces, Progress and Outlook, 2019. S.A. Pervez, M.A. Cambaz, V. Thangadurai and M. Fichtner, Interface in Solid-State Li Battery: Challenges, ACS Applied Materials & Interfaces, Progress and Outlook, 2019.
18.
Zurück zum Zitat Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T-D, Huang W, Li A C, Jin T, Song Q Boron Nitride-Based Nanocomposite Coating for Stabilizing Solid Electrolyte/Anode Interface in Lithium Metal Batteries; 2542-4351; Brookhaven National Lab.(BNL), Upton, NY (United States): (2019) Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T-D, Huang W, Li A C, Jin T, Song Q Boron Nitride-Based Nanocomposite Coating for Stabilizing Solid Electrolyte/Anode Interface in Lithium Metal Batteries; 2542-4351; Brookhaven National Lab.(BNL), Upton, NY (United States): (2019)
19.
Zurück zum Zitat M.D. Tikekar, S. Choudhury, Z. Tu and L.A. Archer, Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries, Nat. Energy, 2016, 1, p p16114.CrossRef M.D. Tikekar, S. Choudhury, Z. Tu and L.A. Archer, Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries, Nat. Energy, 2016, 1, p p16114.CrossRef
20.
Zurück zum Zitat L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter and Y.M. Chiang, Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes, Adv. Energy Mater., 2017, 7, p p1701003.CrossRef L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter and Y.M. Chiang, Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes, Adv. Energy Mater., 2017, 7, p p1701003.CrossRef
22.
Zurück zum Zitat C.-L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans and O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces., 2016, 8, p 10617–10626.CrossRef C.-L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans and O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces., 2016, 8, p 10617–10626.CrossRef
23.
Zurück zum Zitat J. Van Den Broek, S. Afyon and J.L. Rupp, Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors, Adv. Energy Mater., 2016, 6, p p1600736.CrossRef J. Van Den Broek, S. Afyon and J.L. Rupp, Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors, Adv. Energy Mater., 2016, 6, p p1600736.CrossRef
25.
Zurück zum Zitat K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 2016, 28, p 8051–8059.CrossRef K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 2016, 28, p 8051–8059.CrossRef
26.
Zurück zum Zitat T. Liu, Y. Zhang, X. Zhang, L. Wang, S.-X. Zhao, Y.-H. Lin, Y. Shen, J. Luo, L. Li and C.-W. Nan, Enhanced Electrochemical Performance of Bulk Type Oxide Ceramic Lithium Batteries Enabled by Interface Modification, J. Mater. Chem. A, 2018, 6, p 4649–4657.CrossRef T. Liu, Y. Zhang, X. Zhang, L. Wang, S.-X. Zhao, Y.-H. Lin, Y. Shen, J. Luo, L. Li and C.-W. Nan, Enhanced Electrochemical Performance of Bulk Type Oxide Ceramic Lithium Batteries Enabled by Interface Modification, J. Mater. Chem. A, 2018, 6, p 4649–4657.CrossRef
27.
29.
Zurück zum Zitat Y. Li, W. Zhou, X. Chen, X. Lu, Z. Cui, S. Xin, L. Xue, Q. Jia and J.B. Goodenough, Mastering the Interface for Advanced all-Solid-State Lithium Rechargeable Batteries, Proc Natl Acad Sci USA, 2016, 113, p 13313–13317.CrossRef Y. Li, W. Zhou, X. Chen, X. Lu, Z. Cui, S. Xin, L. Xue, Q. Jia and J.B. Goodenough, Mastering the Interface for Advanced all-Solid-State Lithium Rechargeable Batteries, Proc Natl Acad Sci USA, 2016, 113, p 13313–13317.CrossRef
30.
Zurück zum Zitat C.-Z. Zhao, B.-C. Zhao, C. Yan, X.-Q. Zhang, J.-Q. Huang, Y. Mo, X. Xu, H. Li and Q. Zhang, Liquid Phase Therapy to Solid Electrolyte–Electrode Interface in Solid-State Li Metal Batteries: a Review, Energy Storage Mater., 2020, 24, p 75–84.CrossRef C.-Z. Zhao, B.-C. Zhao, C. Yan, X.-Q. Zhang, J.-Q. Huang, Y. Mo, X. Xu, H. Li and Q. Zhang, Liquid Phase Therapy to Solid Electrolyte–Electrode Interface in Solid-State Li Metal Batteries: a Review, Energy Storage Mater., 2020, 24, p 75–84.CrossRef
32.
Zurück zum Zitat W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram and J.B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J. Am. Chem. Soc., 2016, 138, p 9385–9388.CrossRef W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram and J.B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J. Am. Chem. Soc., 2016, 138, p 9385–9388.CrossRef
33.
Zurück zum Zitat Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K.R. Adair, R. Li, C. Zhang, J. Liu, L.Y. Kuo, Y. Hu, T.K. Sham, L. Zhang, R. Yang, S. Lu, X. Song and X. Sun, Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition, ACS Appl Mater Interfaces, 2018, 10, p 31240–31248.CrossRef Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K.R. Adair, R. Li, C. Zhang, J. Liu, L.Y. Kuo, Y. Hu, T.K. Sham, L. Zhang, R. Yang, S. Lu, X. Song and X. Sun, Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition, ACS Appl Mater Interfaces, 2018, 10, p 31240–31248.CrossRef
34.
Zurück zum Zitat J.Y. Liang, X.X. Zeng, X.D. Zhang, T.T. Zuo, M. Yan, Y.X. Yin, J.L. Shi, X.W. Wu, Y.G. Guo and L.J. Wan, Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries, J Am Chem Soc, 2019, 141, p 9165–9169.CrossRef J.Y. Liang, X.X. Zeng, X.D. Zhang, T.T. Zuo, M. Yan, Y.X. Yin, J.L. Shi, X.W. Wu, Y.G. Guo and L.J. Wan, Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries, J Am Chem Soc, 2019, 141, p 9165–9169.CrossRef
35.
Zurück zum Zitat X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo and L.-J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J. Am. Chem. Soc., 2016, 138, p 15825–15828.CrossRef X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo and L.-J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J. Am. Chem. Soc., 2016, 138, p 15825–15828.CrossRef
37.
Zurück zum Zitat S.D. Jackman and R.A. Cutler, Effect of Microcracking on Ionic Conductivity in LATP, J. Power Sources, 2012, 218, p 65–72.CrossRef S.D. Jackman and R.A. Cutler, Effect of Microcracking on Ionic Conductivity in LATP, J. Power Sources, 2012, 218, p 65–72.CrossRef
38.
Zurück zum Zitat H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa and S.I. Tobishima, Preparation of Lithium Ion Conducting Solid Electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x= 0.3) Obtained by Using the Mechanochemical Method and its Application as Surface Modification Materials of LiCoO2 Cathode for Lithium Cell, J. Power Sources, 2013 https://doi.org/10.1016/j.jpowsour.2013.05.039CrossRef H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa and S.I. Tobishima, Preparation of Lithium Ion Conducting Solid Electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x= 0.3) Obtained by Using the Mechanochemical Method and its Application as Surface Modification Materials of LiCoO2 Cathode for Lithium Cell, J. Power Sources, 2013 https://​doi.​org/​10.​1016/​j.​jpowsour.​2013.​05.​039CrossRef
39.
Zurück zum Zitat Q. Song, A. Li, L. Shi, C. Qian, T.G. Feric, Y. Fu, H. Zhang, Z. Li, P. Wang, Z. Li, H. Zhai, X. Wang, M. Dontigny, K. Zaghib, A.-H. Park, K. Myers, X. Chuan and Y. Yang, Thermally Stable, Nano-Porous and Eco-friendly Sodium Alginate/Attapulgite Separator for lithium-ion Batteries, Energy Storage Mater., 2019, 22, p 48–56.CrossRef Q. Song, A. Li, L. Shi, C. Qian, T.G. Feric, Y. Fu, H. Zhang, Z. Li, P. Wang, Z. Li, H. Zhai, X. Wang, M. Dontigny, K. Zaghib, A.-H. Park, K. Myers, X. Chuan and Y. Yang, Thermally Stable, Nano-Porous and Eco-friendly Sodium Alginate/Attapulgite Separator for lithium-ion Batteries, Energy Storage Mater., 2019, 22, p 48–56.CrossRef
Metadaten
Titel
Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance
verfasst von
Fangfang Liu
Xiuyun Chuan
Yang Yang
Dubin Huang
Xin He
Publikationsdatum
12.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05748-7

Weitere Artikel der Ausgabe 6/2021

Journal of Materials Engineering and Performance 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.