Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2015

01.10.2015 | RESEARCH PAPER

Stacking sequence optimization of horizontal axis wind turbine blade using FEA, ANN and GA

verfasst von: P. Emmanuel Nicholas, K. P. Padmanaban, D. Vasudevan, T. Ramachandran

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The requirements for wind energy are significantly increasing for the sources of non-renewable energy is censoriously shortened and the awareness on green energy is emergent. The required energy from the wind turbine can be increased by optimally varying the aerodynamic considerations like aerofoil section, chord length, angle of attack, twist angle and the rotor diameter. However the blade may structurally fail, for the aerodynamic considerations are generally against the structural requirements. For example, the coefficient of lift can be increased with the reduced thickness but the structure may fail due to lacking of bending and torsional strength. Similarly, when the wind turbine blade radius is increased, the structure will have poor buckling strength. As the outer shape of a wind turbine blade and the thickness are determined based on the aerodynamic considerations, they are kept constant in this work and the buckling strength of the wind turbine structure is improved by optimally varying the ply orientations and stacking sequences at each section of the wind turbine blade. The difficulty due to high computational cost in the stacking sequence optimization of wind turbine blade is overcome by replacing finite element analysis using artificial neural network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almeida FS, Awruch AM (2009) Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos Struct 88(3):443–454CrossRef Almeida FS, Awruch AM (2009) Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos Struct 88(3):443–454CrossRef
Zurück zum Zitat Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetCrossRef Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetCrossRef
Zurück zum Zitat Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden
Zurück zum Zitat Cai X, Zhu J, Pan P, Rongrong G (2012) Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11):4683–4696CrossRef Cai X, Zhu J, Pan P, Rongrong G (2012) Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11):4683–4696CrossRef
Zurück zum Zitat Cai X, Pan P, Zhu J, Rongrong G (2013) The analysis of the aerodynamic character and structural response of large-scale wind turbine blades. Energies 6(7):3134–3148CrossRef Cai X, Pan P, Zhu J, Rongrong G (2013) The analysis of the aerodynamic character and structural response of large-scale wind turbine blades. Energies 6(7):3134–3148CrossRef
Zurück zum Zitat Chakraborty D (2005) Artificial neural network based delamination prediction in laminated composites. Mater Des 26(1):1–7CrossRef Chakraborty D (2005) Artificial neural network based delamination prediction in laminated composites. Mater Des 26(1):1–7CrossRef
Zurück zum Zitat Demuth H, Beale M, Martin H (2009) Neural network toolbox user’s guide. The Mathworks, Natick Demuth H, Beale M, Martin H (2009) Neural network toolbox user’s guide. The Mathworks, Natick
Zurück zum Zitat Emmanuel Nicholas P, Padmanaban KP, Vasudevan D (2014) Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA. Struct Eng Mech 52(4):815–827CrossRef Emmanuel Nicholas P, Padmanaban KP, Vasudevan D (2014) Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA. Struct Eng Mech 52(4):815–827CrossRef
Zurück zum Zitat Froyd L, Dahlhaug O (2011) Rotor design for a 10 MW offshore wind turbine. In Proceedings of the Twenty-first International Offshore and Polar Engineering Conference 19–24 Froyd L, Dahlhaug O (2011) Rotor design for a 10 MW offshore wind turbine. In Proceedings of the Twenty-first International Offshore and Polar Engineering Conference 19–24
Zurück zum Zitat Gantovnik VB, Gürdal Z, Watson LT (2002) A genetic algorithm with memory for optimal design of laminated sandwich composite panels. Compos Struct 58(4):513–520CrossRef Gantovnik VB, Gürdal Z, Watson LT (2002) A genetic algorithm with memory for optimal design of laminated sandwich composite panels. Compos Struct 58(4):513–520CrossRef
Zurück zum Zitat Gaudern N, Symons DD (2010) Comparison of theoretical and numerical buckling loads for wind turbine blade panels. Wind Eng 34(2):193–206CrossRef Gaudern N, Symons DD (2010) Comparison of theoretical and numerical buckling loads for wind turbine blade panels. Wind Eng 34(2):193–206CrossRef
Zurück zum Zitat Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90(1):1–11CrossRef Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90(1):1–11CrossRef
Zurück zum Zitat Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M (2010) Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19(8):1116–1127CrossRef Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M (2010) Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19(8):1116–1127CrossRef
Zurück zum Zitat Gurdal Z, Haftka RT, Nagendra S (1994) Genetic algorithms for the design of laminated composite panels. SAMPE J 30(3):29–35 Gurdal Z, Haftka RT, Nagendra S (1994) Genetic algorithms for the design of laminated composite panels. SAMPE J 30(3):29–35
Zurück zum Zitat Hu W, Han I, Park SC, Choi DH (2012) Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. J Mech Sci Techol 26(1):29–135. Hu W, Han I, Park SC, Choi DH (2012) Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. J Mech Sci Techol 26(1):29–135.
Zurück zum Zitat Iyengar NGR, Vyas N (2011) Optimum design of laminated composite under axial compressive load. Sadhana 36(1):73–85CrossRef Iyengar NGR, Vyas N (2011) Optimum design of laminated composite under axial compressive load. Sadhana 36(1):73–85CrossRef
Zurück zum Zitat Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76(1):52–61CrossRef Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76(1):52–61CrossRef
Zurück zum Zitat Jureczko MEZYK, Pawlak M, Męzyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2):463–471CrossRef Jureczko MEZYK, Pawlak M, Męzyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2):463–471CrossRef
Zurück zum Zitat Kermanshashi B, Iwamiya H (2002) Up to 2020 load casting using neural nets. Electr Power Energy Syst 24:789–797CrossRef Kermanshashi B, Iwamiya H (2002) Up to 2020 load casting using neural nets. Electr Power Energy Syst 24:789–797CrossRef
Zurück zum Zitat Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114CrossRef Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114CrossRef
Zurück zum Zitat Lanting Z (2012) Research on structural lay-up optimum design of composite wind turbine blade. Energy Procedia 14:637–642CrossRef Lanting Z (2012) Research on structural lay-up optimum design of composite wind turbine blade. Energy Procedia 14:637–642CrossRef
Zurück zum Zitat Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956MATHCrossRef Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956MATHCrossRef
Zurück zum Zitat Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of wind turbines using FAST and improved PSO. Renew Energy 42:227–233CrossRef Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of wind turbines using FAST and improved PSO. Renew Energy 42:227–233CrossRef
Zurück zum Zitat Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167CrossRef
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef
Zurück zum Zitat Lund E, Kuhlmeier L, Stegmann J (2005) Buckling optimization of laminated hybrid composite shell structures using discrete material optimization. 6th World Congress on Structural and Multidisciplinary Optimization Lund E, Kuhlmeier L, Stegmann J (2005) Buckling optimization of laminated hybrid composite shell structures using discrete material optimization. 6th World Congress on Structural and Multidisciplinary Optimization
Zurück zum Zitat Maheri A, Noroozi S, Vinney J (2007) Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades. Renew Energy 32:916–930CrossRef Maheri A, Noroozi S, Vinney J (2007) Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades. Renew Energy 32:916–930CrossRef
Zurück zum Zitat Messager T, Pyrz M, Gineste B, Chauchot P (2002) Optimal laminations of thin underwater composite cylindrical vessels. Compos Struct 58(4):529–537CrossRef Messager T, Pyrz M, Gineste B, Chauchot P (2002) Optimal laminations of thin underwater composite cylindrical vessels. Compos Struct 58(4):529–537CrossRef
Zurück zum Zitat Park JH, Hwang JH, Lee CS, Hwang W (2001) Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos Struct 52(2):217–231CrossRef Park JH, Hwang JH, Lee CS, Hwang W (2001) Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos Struct 52(2):217–231CrossRef
Zurück zum Zitat Rajendran I, Vijayarangan S (2001) Optimal design of a composite leaf spring using genetic algorithms. Comput Struct 79(11):1121–1129CrossRef Rajendran I, Vijayarangan S (2001) Optimal design of a composite leaf spring using genetic algorithms. Comput Struct 79(11):1121–1129CrossRef
Zurück zum Zitat Sale D, Aliseda A, Motley M, Li Y (2013) Structural optimization of composite blades for wind and hydrokinetic turbines. Proceedings of the First Marine Energy Technology Symposium, Washington Sale D, Aliseda A, Motley M, Li Y (2013) Structural optimization of composite blades for wind and hydrokinetic turbines. Proceedings of the First Marine Energy Technology Symposium, Washington
Zurück zum Zitat Schlipf D, Schlipf DJ, Kühn M (2013) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16(7):1107–1129CrossRef Schlipf D, Schlipf DJ, Kühn M (2013) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16(7):1107–1129CrossRef
Zurück zum Zitat Sieros G, Chaviaropoulos P, Sorensen JD, Bulder BH, Jamieson P (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind energy 15(1):3–17CrossRef Sieros G, Chaviaropoulos P, Sorensen JD, Bulder BH, Jamieson P (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind energy 15(1):3–17CrossRef
Zurück zum Zitat Song F, Ni Y, Tan Z (2011) Optimization design, modeling and dynamic analysis for composite wind turbine blade. Procedia Eng 16:369–375CrossRef Song F, Ni Y, Tan Z (2011) Optimization design, modeling and dynamic analysis for composite wind turbine blade. Procedia Eng 16:369–375CrossRef
Zurück zum Zitat Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3):349–357CrossRef Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3):349–357CrossRef
Zurück zum Zitat Todoroki A, Kawakami Y (2007) Structural design for CF/GF hybrid wind turbine blade using multi-objective genetic algorithm and kriging model response surface method. AIAA Conference and Exhibit, CaliforniaCrossRef Todoroki A, Kawakami Y (2007) Structural design for CF/GF hybrid wind turbine blade using multi-objective genetic algorithm and kriging model response surface method. AIAA Conference and Exhibit, CaliforniaCrossRef
Zurück zum Zitat Tomislav B, Ukic S, Peternel I, Kusic H, Bozic AL (2014) Artificial neural network models for advanced oxidation of organics in water matrix-comparison of applied methodologies. Indian J Chem Tech 21(1):21–29 Tomislav B, Ukic S, Peternel I, Kusic H, Bozic AL (2014) Artificial neural network models for advanced oxidation of organics in water matrix-comparison of applied methodologies. Indian J Chem Tech 21(1):21–29
Zurück zum Zitat Vasjaliya Naishadh G, Gangadharan SN (2013) Aero-structural design optimization of composite wind turbine blade. PhD diss., PhD thesis, Embry-Riddle Aeronautical University Vasjaliya Naishadh G, Gangadharan SN (2013) Aero-structural design optimization of composite wind turbine blade. PhD diss., PhD thesis, Embry-Riddle Aeronautical University
Zurück zum Zitat Vincenti A, Vannucci P, Ahmadian MR (2013) Optimization of laminated composites by using genetic algorithm and the polar description of plane anisotropy. Mech Adv Mater Struct 20(3):242–255CrossRef Vincenti A, Vannucci P, Ahmadian MR (2013) Optimization of laminated composites by using genetic algorithm and the polar description of plane anisotropy. Mech Adv Mater Struct 20(3):242–255CrossRef
Zurück zum Zitat Wang L, Wang T, Luo Y (2011) Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Appl Math Mech 32:739–748MATHMathSciNetCrossRef Wang L, Wang T, Luo Y (2011) Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Appl Math Mech 32:739–748MATHMathSciNetCrossRef
Zurück zum Zitat Yuen K-V, Lam H-F (2006) On the complexity of artificial neural networks for smart structures monitoring. Eng Struct 28(7):977–984CrossRef Yuen K-V, Lam H-F (2006) On the complexity of artificial neural networks for smart structures monitoring. Eng Struct 28(7):977–984CrossRef
Zurück zum Zitat Zhang C, Wang S, Xie H (2011) Static structural analysis of parked composite wind turbine blades. Proceedings of the 8th International Conference on Structural Dynamics, Leuven Zhang C, Wang S, Xie H (2011) Static structural analysis of parked composite wind turbine blades. Proceedings of the 8th International Conference on Structural Dynamics, Leuven
Zurück zum Zitat Zhu J, Cai X, Pan P, Rongrong G (2014) Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 7(2):988–1002CrossRef Zhu J, Cai X, Pan P, Rongrong G (2014) Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 7(2):988–1002CrossRef
Metadaten
Titel
Stacking sequence optimization of horizontal axis wind turbine blade using FEA, ANN and GA
verfasst von
P. Emmanuel Nicholas
K. P. Padmanaban
D. Vasudevan
T. Ramachandran
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1269-1

Weitere Artikel der Ausgabe 4/2015

Structural and Multidisciplinary Optimization 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.