Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2010

01.11.2010

Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

verfasst von: M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, M. Ozen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat D.A. Griffin, Evaluation of Design Concepts for Adaptive Wind Turbine Blades, SAND2004-2424, Sandia National Laboratories, 2002 D.A. Griffin, Evaluation of Design Concepts for Adaptive Wind Turbine Blades, SAND2004-2424, Sandia National Laboratories, 2002
3.
Zurück zum Zitat P. Brondsted, H. Lilholt, and A. Lystrup, Composite Materials for Wind Power Turbine Blades, Annu. Rev. Mater. Res., 2005, 35, p 505–538CrossRefADS P. Brondsted, H. Lilholt, and A. Lystrup, Composite Materials for Wind Power Turbine Blades, Annu. Rev. Mater. Res., 2005, 35, p 505–538CrossRefADS
4.
Zurück zum Zitat D.A. Griffin, WindPact Turbine Design Scaling Studies Technical Area-1-Composite Blades for 80- to 120-Meter Rotor, NREL/SR-500-29492, NREL, Washington, 2001 D.A. Griffin, WindPact Turbine Design Scaling Studies Technical Area-1-Composite Blades for 80- to 120-Meter Rotor, NREL/SR-500-29492, NREL, Washington, 2001
5.
Zurück zum Zitat M. Grujicic, V. Sellappan, G. Arakere, J.C. Zeigert, K.Y. Kocer, and D. Schmueser, Multi-Disciplinary Design Optimization of a Composite Car Door for Structural Performance, NVH, Crashworthiness, Durability and Manufacturability, Multidis. Model. Mater. Struct., 2009, 5, p 1–28 M. Grujicic, V. Sellappan, G. Arakere, J.C. Zeigert, K.Y. Kocer, and D. Schmueser, Multi-Disciplinary Design Optimization of a Composite Car Door for Structural Performance, NVH, Crashworthiness, Durability and Manufacturability, Multidis. Model. Mater. Struct., 2009, 5, p 1–28
6.
Zurück zum Zitat MATLAB, The Language of Technical Computing, 7th ed., The MathWorks Inc., MA, 2006 MATLAB, The Language of Technical Computing, 7th ed., The MathWorks Inc., MA, 2006
7.
Zurück zum Zitat M. Grujicic, G. Arakere, E. Subramanian, V. Sellappan, A. Vallejo, and M. Ozen, Structural-Response Analysis, Fatigue-Life Prediction, and Material Selection for 1 MW Horizontal-Axis Wind-Turbine Blades, J. Mater. Eng. Perform., 2009. doi:10.1007/s11665-009-9558-8 M. Grujicic, G. Arakere, E. Subramanian, V. Sellappan, A. Vallejo, and M. Ozen, Structural-Response Analysis, Fatigue-Life Prediction, and Material Selection for 1 MW Horizontal-Axis Wind-Turbine Blades, J. Mater. Eng. Perform., 2009. doi:10.​1007/​s11665-009-9558-8
9.
Zurück zum Zitat M.S. Selig and J.L. Tangler, A Multipoint Inverse Design Method for Horizontal Axis Wind Turbines, AWEA Windpower Conference, Minneapolis, MN, 2004 M.S. Selig and J.L. Tangler, A Multipoint Inverse Design Method for Horizontal Axis Wind Turbines, AWEA Windpower Conference, Minneapolis, MN, 2004
10.
Zurück zum Zitat IEC-61400-3 (2009-02) Wind Turbines—Part 3, Design Requirements for Offshore Wind Turbines Maintenance Result Date, p 201 IEC-61400-3 (2009-02) Wind Turbines—Part 3, Design Requirements for Offshore Wind Turbines Maintenance Result Date, p 201
11.
Zurück zum Zitat ABAQUS/Standard Version 6.8-1, User Documentation, Dassault Systemes, 2008 ABAQUS/Standard Version 6.8-1, User Documentation, Dassault Systemes, 2008
12.
Zurück zum Zitat M. Matsuiski and T. Endo, Fatigue of Metals Subjected to Varying Stress, Japan Soc. Mech. Eng., 1969 M. Matsuiski and T. Endo, Fatigue of Metals Subjected to Varying Stress, Japan Soc. Mech. Eng., 1969
13.
Zurück zum Zitat J. Goodman, Mechanics Applied to Engineering, Longman, Green, & Co, London, 1899 J. Goodman, Mechanics Applied to Engineering, Longman, Green, & Co, London, 1899
14.
Zurück zum Zitat M.A. Miner, Cumulative Damage in Fatigue, J. Appl. Mech., 1945, 12, p A159–A164 M.A. Miner, Cumulative Damage in Fatigue, J. Appl. Mech., 1945, 12, p A159–A164
15.
Zurück zum Zitat A.A. Ten Have, WISPER and WISPERX: Final Definition of Two Standardized Fatigue Loading Sequences for Wind Turbine Blades, NLR-TP-91476U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands, 1992 A.A. Ten Have, WISPER and WISPERX: Final Definition of Two Standardized Fatigue Loading Sequences for Wind Turbine Blades, NLR-TP-91476U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands, 1992
Metadaten
Titel
Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades
verfasst von
M. Grujicic
G. Arakere
B. Pandurangan
V. Sellappan
A. Vallejo
M. Ozen
Publikationsdatum
01.11.2010
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2010
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-010-9596-2

Weitere Artikel der Ausgabe 8/2010

Journal of Materials Engineering and Performance 8/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.