Skip to main content
Erschienen in: Journal of Materials Science 25/2020

20.05.2020 | Composites & nanocomposites

Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing

verfasst von: Nashat Nawafleh, Fatma Kubra Erbay Elibol, Mutabe Aljaghtham, Emre Oflaz, Andrew J. Ciciriello, Courtney M. Dumont, Edward Dauer, Recep M. Gorguluarslan, Teyfik Demir, Emrah Celik

Erschienen in: Journal of Materials Science | Ausgabe 25/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additively manufactured polymer composites have advantages over those fabricated traditionally due to their improved design flexibility, short time frame of design-to-manufacturing process and reduced material waste and investment cost. Additive manufacturing of short fiber reinforced thermoplastic composites has been well investigated recently, and their mechanical performance has been well characterized. Additive manufacturing of thermoplastic composites, however, has unresolved, high porosity and low mechanical performance issues. In this study, we investigated the feasibility of using of a customized, vibration-integrated, direct write additive manufacturing setup to fabricate short Kevlar reinforced epoxy composites. Highly viscous composite inks (max. of 6.3% Kevlar fiber) were successfully extruded and 3D-printed on a print bed, at room temperature. The mechanical performance of the printed composites was examined and compared to that of unreinforced base ink specimens by performing static and dynamic 3-point bending experiments. It was observed that additively manufactured, thermoset-based, short Kevlar fiber reinforced composites possess the mechanical performance surpassing the previously reported short Kevlar fiber reinforced thermoplastic composites and near to that of continuous fiber reinforced composites. Considering their high mechanical performance in addition to low weight, and high ductility, these composite materials have a great potential to find novel structural applications in the near future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sikkema DJ, Northolt MG, Pourdeyhimi B (2003) Assessment of new high-performance fibers for advanced applications. MRS Bull 28(8):579–584CrossRef Sikkema DJ, Northolt MG, Pourdeyhimi B (2003) Assessment of new high-performance fibers for advanced applications. MRS Bull 28(8):579–584CrossRef
2.
Zurück zum Zitat Afshari M et al (2008) High performance fibers based on rigid and flexible polymers. Polym Rev 48(2):230–274CrossRef Afshari M et al (2008) High performance fibers based on rigid and flexible polymers. Polym Rev 48(2):230–274CrossRef
3.
Zurück zum Zitat Adams WW, Eby R (1987) High-performance polymer fibers. MRS Bull 12(8):22–26CrossRef Adams WW, Eby R (1987) High-performance polymer fibers. MRS Bull 12(8):22–26CrossRef
4.
Zurück zum Zitat Chae HG, Kumar S (2008) Making strong fibers. Science 319(5865):908–909CrossRef Chae HG, Kumar S (2008) Making strong fibers. Science 319(5865):908–909CrossRef
6.
Zurück zum Zitat Parsons EM (2019) Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: modeling, manufacturing, and testing. Compos Struct 223:110656CrossRef Parsons EM (2019) Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: modeling, manufacturing, and testing. Compos Struct 223:110656CrossRef
7.
Zurück zum Zitat Nguyen N et al (2018) Recent advances on 3D printing technique for thermal-related applications. Adv Eng Mater 20(5):1700876CrossRef Nguyen N et al (2018) Recent advances on 3D printing technique for thermal-related applications. Adv Eng Mater 20(5):1700876CrossRef
8.
Zurück zum Zitat Heller BP, Smith DE, Jack DA (2019) Planar deposition flow modeling of fiber filled composites in large area additive manufacturing. Addit Manuf 25:227–238 Heller BP, Smith DE, Jack DA (2019) Planar deposition flow modeling of fiber filled composites in large area additive manufacturing. Addit Manuf 25:227–238
9.
Zurück zum Zitat Kishore V et al (2017) Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf 14:7–12 Kishore V et al (2017) Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf 14:7–12
10.
Zurück zum Zitat van de Werken N et al (2020) Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 31:100962 van de Werken N et al (2020) Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 31:100962
11.
Zurück zum Zitat Celik E (2020) Additive manufacturing. De Gruyter, Berlin, Boston Celik E (2020) Additive manufacturing. De Gruyter, Berlin, Boston
12.
Zurück zum Zitat Goh GD et al (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Des 137:79–89CrossRef Goh GD et al (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Des 137:79–89CrossRef
13.
Zurück zum Zitat Balla VK et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos Part B Eng 174:106956CrossRef Balla VK et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos Part B Eng 174:106956CrossRef
14.
Zurück zum Zitat Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef
15.
Zurück zum Zitat Pierson HA et al (2019) Mechanical properties of printed epoxy–carbon fiber composites. Exp Mech 59(6):843–857CrossRef Pierson HA et al (2019) Mechanical properties of printed epoxy–carbon fiber composites. Exp Mech 59(6):843–857CrossRef
16.
Zurück zum Zitat Tekinalp HL et al (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150CrossRef Tekinalp HL et al (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150CrossRef
17.
Zurück zum Zitat Bhandari S, Lopez-Anido RA, Gardner DJ (2019) Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf 30:100922 Bhandari S, Lopez-Anido RA, Gardner DJ (2019) Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf 30:100922
18.
Zurück zum Zitat Sodeifian G, Ghaseminejad S, Yousefi AA (2019) Preparation of polypropylene/short glass fiber composite as fused deposition modeling (FDM) filament. Results Phys 12:205–222CrossRef Sodeifian G, Ghaseminejad S, Yousefi AA (2019) Preparation of polypropylene/short glass fiber composite as fused deposition modeling (FDM) filament. Results Phys 12:205–222CrossRef
19.
Zurück zum Zitat Mangat AS et al (2018) Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyp J 24(7):1221–1234CrossRef Mangat AS et al (2018) Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyp J 24(7):1221–1234CrossRef
20.
Zurück zum Zitat Wang K et al (2019) Flexure behaviors of ABS-based composites containing carbon and Kevlar fibers by material extrusion 3D printing. Polymers 11(11):1878CrossRef Wang K et al (2019) Flexure behaviors of ABS-based composites containing carbon and Kevlar fibers by material extrusion 3D printing. Polymers 11(11):1878CrossRef
21.
Zurück zum Zitat Ning F et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef Ning F et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef
22.
Zurück zum Zitat Karapappas P et al (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43(9):977–985CrossRef Karapappas P et al (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43(9):977–985CrossRef
23.
Zurück zum Zitat Quan Z et al (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18(9):503–512CrossRef Quan Z et al (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18(9):503–512CrossRef
24.
Zurück zum Zitat Dickson AN et al (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152 Dickson AN et al (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152
25.
Zurück zum Zitat Ning F et al (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462CrossRef Ning F et al (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462CrossRef
26.
Zurück zum Zitat Oztan C et al (2019) Microstructure and mechanical properties of three dimensional-printed continuous fiber composites. J Compos Mater 53(2):271–280CrossRef Oztan C et al (2019) Microstructure and mechanical properties of three dimensional-printed continuous fiber composites. J Compos Mater 53(2):271–280CrossRef
27.
Zurück zum Zitat Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20CrossRef Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20CrossRef
28.
Zurück zum Zitat Lewicki J et al (2017) Additive manufacturing continuous filament carbon fiber epoxy composites. Google Patents Lewicki J et al (2017) Additive manufacturing continuous filament carbon fiber epoxy composites. Google Patents
29.
Zurück zum Zitat Zhang Y, Rodrigue D, Aït-Kadi A (2004) Effect of processing on ductility and strength of Kevlar/polyethylene composites. Polym Polym Compos 12(1):17–27 Zhang Y, Rodrigue D, Aït-Kadi A (2004) Effect of processing on ductility and strength of Kevlar/polyethylene composites. Polym Polym Compos 12(1):17–27
30.
Zurück zum Zitat Tanner D, Fitzgerald JA, Phillips BR (1989) The Kevlar story—an advanced materials case study. Angew Chem Int Ed Engl 28(5):649–654CrossRef Tanner D, Fitzgerald JA, Phillips BR (1989) The Kevlar story—an advanced materials case study. Angew Chem Int Ed Engl 28(5):649–654CrossRef
31.
Zurück zum Zitat Nawafleh N et al (2019) Additive manufacturing of Kevlar reinforced epoxy composites. Proceedings of the ASME 2019 international mechanical engineering congress and exposition. Volume 2A: advanced manufacturing, Salt Lake City, Utah, USA, 11–14 November 2019 Nawafleh N et al (2019) Additive manufacturing of Kevlar reinforced epoxy composites. Proceedings of the ASME 2019 international mechanical engineering congress and exposition. Volume 2A: advanced manufacturing, Salt Lake City, Utah, USA, 11–14 November 2019
32.
Zurück zum Zitat Nawafleh N, Celik E (2020) Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Addit Manuf 33:101109 Nawafleh N, Celik E (2020) Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Addit Manuf 33:101109
33.
Zurück zum Zitat ASTM, ASTM D7264/D7264M-07 (2007) Standard test method for flexural properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA ASTM, ASTM D7264/D7264M-07 (2007) Standard test method for flexural properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA
34.
Zurück zum Zitat BS, BS ISO 13003:2003 (2003) Fibre reinforced plastics—determination of fatigue properties under cyclic loading conditions. BS, London BS, BS ISO 13003:2003 (2003) Fibre reinforced plastics—determination of fatigue properties under cyclic loading conditions. BS, London
35.
Zurück zum Zitat Little RE (1975) Manual on statistical planning and analysis of fatigue experiments, ASTM STP 588. ASTM, Editor, PhiladelphiaCrossRef Little RE (1975) Manual on statistical planning and analysis of fatigue experiments, ASTM STP 588. ASTM, Editor, PhiladelphiaCrossRef
36.
Zurück zum Zitat Razavi SMJ et al (2018) Fatigue behavior of porous Ti–6Al–4V made by laser-engineered net shaping. Materials 11(2):284CrossRef Razavi SMJ et al (2018) Fatigue behavior of porous Ti–6Al–4V made by laser-engineered net shaping. Materials 11(2):284CrossRef
37.
Zurück zum Zitat Avalle M et al (2002) Static and fatigue strength of a die-cast aluminium alloy under different feeding conditions. Proc Inst Mech Eng Part L J Mater Des Appl 216(L1):25–30 Avalle M et al (2002) Static and fatigue strength of a die-cast aluminium alloy under different feeding conditions. Proc Inst Mech Eng Part L J Mater Des Appl 216(L1):25–30
Metadaten
Titel
Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing
verfasst von
Nashat Nawafleh
Fatma Kubra Erbay Elibol
Mutabe Aljaghtham
Emre Oflaz
Andrew J. Ciciriello
Courtney M. Dumont
Edward Dauer
Recep M. Gorguluarslan
Teyfik Demir
Emrah Celik
Publikationsdatum
20.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 25/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04826-w

Weitere Artikel der Ausgabe 25/2020

Journal of Materials Science 25/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.