Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2019

06.06.2019 | Original research

Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames

verfasst von: Antonio Attili, Fabrizio Bisetti

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turbulence and mixing statistics are investigated in a set of flames at a jet Reynolds number of 15000 achieving a Taylor’s scale Reynolds number in the range 100 ≤Reλ ≤ 150. In particular, the impact on small scale turbulence statistics of different levels of flame extinction, induced imposing different Damköhler numbers in the three simulated cases, is investigated. It is found that the non-dimensional scalar dissipation depends on the Damköhler number slightly. This deviation from self-similarity manifests itself as a decrease of the non-dimensional scalar dissipation with increasing occurrence of localized extinction events. This is caused by the decrease of molecular diffusion due to the lower flame temperatures in the low Damköhler number cases. Probability density functions of the scalar dissipation χ show important deviations from the log-normal distribution. The left tail of the pdf scales as χ1/2 while the right tail scales as \(e^{-c\chi ^{\alpha }}\), as shown for incompressible turbulence. In all flames, the vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain and the gradient of mixture fraction aligns with the most compressive strain. Conditioning on the local values of mixture fraction and heat release does not affect the statistics. The alignment statistics of vorticity are in agreement with those in homogeneous isotropic turbulence while they show some difference compared to previous results in non premixed flames. The alignment between strain and mixture fraction gradient differs slightly from the homogeneous isotropic turbulent case but agree remarkably well with previous results observed in homogeneous shear incompressible flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10(3), 319–339 (1984)CrossRef Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10(3), 319–339 (1984)CrossRef
2.
Zurück zum Zitat Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13(01), 82–85 (1962)MathSciNetMATHCrossRef Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13(01), 82–85 (1962)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199–216 (2005)MathSciNetMATHCrossRef Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199–216 (2005)MathSciNetMATHCrossRef
5.
6.
Zurück zum Zitat Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame. Proc. Combust. Inst. 30(1), 691–699 (2005)CrossRef Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame. Proc. Combust. Inst. 30(1), 691–699 (2005)CrossRef
7.
Zurück zum Zitat Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proc Combust. Inst. 31, 1633–1640 (2007)CrossRef Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proc Combust. Inst. 31, 1633–1640 (2007)CrossRef
8.
Zurück zum Zitat Karpetis, A.N., Barlow, R.S.: Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc Combust. Inst. 29(2), 1929–1936 (2002)CrossRef Karpetis, A.N., Barlow, R.S.: Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc Combust. Inst. 29(2), 1929–1936 (2002)CrossRef
9.
Zurück zum Zitat Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Intermittency in premixed turbulent reacting flows. Phys. Fluids 24(7), 075111 (2012)CrossRef Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Intermittency in premixed turbulent reacting flows. Phys. Fluids 24(7), 075111 (2012)CrossRef
10.
Zurück zum Zitat Chaudhuri, S., Kolla, H., Dave, H.L., Hawkes, E.R., Chen, J.H., Law, C.K.: Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273–285 (2017)CrossRef Chaudhuri, S., Kolla, H., Dave, H.L., Hawkes, E.R., Chen, J.H., Law, C.K.: Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273–285 (2017)CrossRef
11.
Zurück zum Zitat Kelman, J.B., Masri, A.R.: Reaction zone structure and scalar dissipation rates in turbulent diffusion flames. Combust. Sci. Technol. 129(4-6), 17–55 (1997)CrossRef Kelman, J.B., Masri, A.R.: Reaction zone structure and scalar dissipation rates in turbulent diffusion flames. Combust. Sci. Technol. 129(4-6), 17–55 (1997)CrossRef
12.
Zurück zum Zitat Karpetis, A.N., Barlow, R.S.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30 (1), 665–672 (2005)CrossRef Karpetis, A.N., Barlow, R.S.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30 (1), 665–672 (2005)CrossRef
13.
Zurück zum Zitat Sutton, J.A., Driscoll, J.F.: Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames. Combust. Flame 160(9), 1767–1778 (2013)CrossRef Sutton, J.A., Driscoll, J.F.: Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames. Combust. Flame 160(9), 1767–1778 (2013)CrossRef
14.
Zurück zum Zitat Ashurst, Wm. T., Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30(8), 2343–2353 (1987)CrossRef Ashurst, Wm. T., Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30(8), 2343–2353 (1987)CrossRef
15.
Zurück zum Zitat She, Z.S., Jackson, E., Orszag, S.A.: Structure and dynamics of homogeneous turbulence: models and simulations. In: Philos. Trans. R. Soc. London, Ser. A, vol. 434, pp. 101–124. The Royal Society (1991) She, Z.S., Jackson, E., Orszag, S.A.: Structure and dynamics of homogeneous turbulence: models and simulations. In: Philos. Trans. R. Soc. London, Ser. A, vol. 434, pp. 101–124. The Royal Society (1991)
16.
Zurück zum Zitat Tsinober, A., Kit, E., Dracos, T.: Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech. 242, 169–192 (1992)CrossRef Tsinober, A., Kit, E., Dracos, T.: Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech. 242, 169–192 (1992)CrossRef
17.
Zurück zum Zitat Vincent, A., Meneguzzi, M.: The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245–254 (1994)MATHCrossRef Vincent, A., Meneguzzi, M.: The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245–254 (1994)MATHCrossRef
18.
Zurück zum Zitat Nomura, K.K., Elghobashi, S.E.: The structure of inhomogeneous turbulence in variable density nonpremixed flames. Theor. Comput. Fluid Dyn. 5(4-5), 153–175 (1993)MATHCrossRef Nomura, K.K., Elghobashi, S.E.: The structure of inhomogeneous turbulence in variable density nonpremixed flames. Theor. Comput. Fluid Dyn. 5(4-5), 153–175 (1993)MATHCrossRef
19.
Zurück zum Zitat Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of the α-strain and vorticity in turbulent nonpremixed flames. Phys. Fluids 8(8), 2251–2253 (1996)CrossRef Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of the α-strain and vorticity in turbulent nonpremixed flames. Phys. Fluids 8(8), 2251–2253 (1996)CrossRef
20.
Zurück zum Zitat Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys. Fluids 10(9), 2260–2267 (1998)MathSciNetMATHCrossRef Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys. Fluids 10(9), 2260–2267 (1998)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)MATHCrossRef Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)MATHCrossRef
22.
Zurück zum Zitat Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18(4), 045102 (2006)MathSciNetMATHCrossRef Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18(4), 045102 (2006)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Chakraborty, N., Swaminathan, N.: Influence of the damköhler number on turbulence-scalar interaction in premixed flames. i. physical insight. Phys. Fluids 19(4), 045103 (2007)MATH Chakraborty, N., Swaminathan, N.: Influence of the damköhler number on turbulence-scalar interaction in premixed flames. i. physical insight. Phys. Fluids 19(4), 045103 (2007)MATH
24.
Zurück zum Zitat Hartung, G., Hult, J., Kaminski, C.F., Rogerson, J.W., Swaminathan, N.: Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20(3), 035110 (2008)MATHCrossRef Hartung, G., Hult, J., Kaminski, C.F., Rogerson, J.W., Swaminathan, N.: Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20(3), 035110 (2008)MATHCrossRef
25.
Zurück zum Zitat Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19(11), 115104 (2007)MATHCrossRef Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19(11), 115104 (2007)MATHCrossRef
26.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32(1), 1445–1453 (2009)CrossRef Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32(1), 1445–1453 (2009)CrossRef
27.
Zurück zum Zitat Malkeson, S.P., Chakraborty, N.: Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys. Rev. E 83(4), 046308 (2011)CrossRef Malkeson, S.P., Chakraborty, N.: Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys. Rev. E 83(4), 046308 (2011)CrossRef
28.
Zurück zum Zitat Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)CrossRef Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)CrossRef
29.
Zurück zum Zitat Chakraborty, N.: Statistics of vorticity alignment with local strain rates in turbulent premixed flames. Eur. J. Mech. B. Fluids 46, 201–220 (2014)MathSciNetMATHCrossRef Chakraborty, N.: Statistics of vorticity alignment with local strain rates in turbulent premixed flames. Eur. J. Mech. B. Fluids 46, 201–220 (2014)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in dns of a laboratory high karlovitz premixed turbulent jet flame. Phys. Fluids 28(9), 095107 (2016)CrossRef Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in dns of a laboratory high karlovitz premixed turbulent jet flame. Phys. Fluids 28(9), 095107 (2016)CrossRef
31.
Zurück zum Zitat Coriton, B., Frank, J.H.: Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry. Phys. Fluids 28(2), 025109 (2016)CrossRef Coriton, B., Frank, J.H.: Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry. Phys. Fluids 28(2), 025109 (2016)CrossRef
32.
Zurück zum Zitat Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161, 1849–1865 (2014)CrossRef Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161, 1849–1865 (2014)CrossRef
33.
Zurück zum Zitat Bisetti, F., Attili, A., Pitsch, H.: Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philos. Trans. R. Soc. London, Ser. A 372(2022), 20130324 (2014)CrossRef Bisetti, F., Attili, A., Pitsch, H.: Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philos. Trans. R. Soc. London, Ser. A 372(2022), 20130324 (2014)CrossRef
34.
Zurück zum Zitat Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35, 1215–1223 (2015)CrossRef Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35, 1215–1223 (2015)CrossRef
35.
Zurück zum Zitat Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Lagrangian analysis of mixing and soot transport in a turbulent jet flame. In: Direct and Large-Eddy Simulation IX, pp. 503–509. Springer (2015) Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Lagrangian analysis of mixing and soot transport in a turbulent jet flame. In: Direct and Large-Eddy Simulation IX, pp. 503–509. Springer (2015)
36.
Zurück zum Zitat Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Effects of non-unity lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166, 192–202 (2016)CrossRef Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Effects of non-unity lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166, 192–202 (2016)CrossRef
37.
Zurück zum Zitat Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)MathSciNetMATHCrossRef Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Tomboulides, A.G., Lee, J.C.Y., Orszag, S.A.: Numerical simulation of low mach number reactive flows. J. Sci Comput. 12(2), 139–167 (1997)MathSciNetMATHCrossRef Tomboulides, A.G., Lee, J.C.Y., Orszag, S.A.: Numerical simulation of low mach number reactive flows. J. Sci Comput. 12(2), 139–167 (1997)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc. (2005) Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc. (2005)
40.
Zurück zum Zitat Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159(1), 317–335 (2012)CrossRef Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159(1), 317–335 (2012)CrossRef
41.
Zurück zum Zitat Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors Combust. Flame 156(3), 588–607 (2009)CrossRef Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors Combust. Flame 156(3), 588–607 (2009)CrossRef
42.
Zurück zum Zitat Pitsch, H.: Flamemaster, a C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations. Technical report, University of Technology (RWTH) Aachen (1998) Pitsch, H.: Flamemaster, a C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations. Technical report, University of Technology (RWTH) Aachen (1998)
43.
Zurück zum Zitat Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166 (1987)MATHCrossRef Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166 (1987)MATHCrossRef
44.
Zurück zum Zitat Attili, A., Bisetti, F.: Statistics and scaling of turbulence in a spatially developing mixing layer at R e λ = 250. Phys. Fluids 24(3), 035109 (2012)CrossRef Attili, A., Bisetti, F.: Statistics and scaling of turbulence in a spatially developing mixing layer at R e λ = 250. Phys. Fluids 24(3), 035109 (2012)CrossRef
45.
Zurück zum Zitat Attili, A., Bisetti, F.: Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 88(3), 033013 (2013)CrossRef Attili, A., Bisetti, F.: Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 88(3), 033013 (2013)CrossRef
46.
Zurück zum Zitat Pitsch, H.: FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations. Technical report, University of Technology (RWTH) Aachen (1998b) Pitsch, H.: FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations. Technical report, University of Technology (RWTH) Aachen (1998b)
47.
Zurück zum Zitat Chertkov, M., Falkovich, G., Kolokolov, I.V.: Intermittent dissipation of a passive scalar in turbulence. Phys. Rev Lett. 80(10), 2121–2124 (1998)CrossRef Chertkov, M., Falkovich, G., Kolokolov, I.V.: Intermittent dissipation of a passive scalar in turbulence. Phys. Rev Lett. 80(10), 2121–2124 (1998)CrossRef
48.
Zurück zum Zitat Gamba, A., Kolokolov, I.V.: Dissipation statistics of a passive scalar in a multidimensional smooth flow. J. Stat. Phys. 94(5-6), 759–777 (1999)MathSciNetMATHCrossRef Gamba, A., Kolokolov, I.V.: Dissipation statistics of a passive scalar in a multidimensional smooth flow. J. Stat. Phys. 94(5-6), 759–777 (1999)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Frisch, U.: Turbulence: The legacy of A. N. Kolmogorov. Cambridge University Press. ISBN 0521457130 (1995) Frisch, U.: Turbulence: The legacy of A. N. Kolmogorov. Cambridge University Press. ISBN 0521457130 (1995)
50.
Zurück zum Zitat Gamba, M., Clemens, N.T., Ezekoye, O.A.: Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame. Meas. Sci. Technol. 24(2), 024003 (2013)CrossRef Gamba, M., Clemens, N.T., Ezekoye, O.A.: Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame. Meas. Sci. Technol. 24(2), 024003 (2013)CrossRef
51.
Zurück zum Zitat Dresselhaus, E., Tabor, M.: The kinematics of stretching and alignment of material elements in general flow fields. J. Fluid Mech. 236, 415–444 (1992)MathSciNetMATHCrossRef Dresselhaus, E., Tabor, M.: The kinematics of stretching and alignment of material elements in general flow fields. J. Fluid Mech. 236, 415–444 (1992)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(6787), 639–646 (2000)CrossRef Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(6787), 639–646 (2000)CrossRef
Metadaten
Titel
Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames
verfasst von
Antonio Attili
Fabrizio Bisetti
Publikationsdatum
06.06.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00044-w

Weitere Artikel der Ausgabe 3/2019

Flow, Turbulence and Combustion 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.