Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2021

02.01.2021

Structural and optical studies of molybdenum oxides thin films obtained by thermal evaporation and atomic layer deposition methods for photovoltaic application

verfasst von: Tianyu Pan, Jingye Li, Yinyue Lin, Zhongying Xue, Zengfeng Di, Min Yin, Jilei Wang, Linfeng Lu, Liyou Yang, Dongdong Li

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MoOX (X < 3) has shown its promising potential as an efficient hole-selective passivating contact in crystalline Si solar cells. The device performance highly depends on the film properties of MoOX film, which is significantly affected by different synthesis methods. In this work, Si solar cells with c-Si(p)/MoOX rear contacts were demonstrated, where the MoOX films were realized by thermal evaporation (TE), atomic layer deposition (ALD), and UV-assisted ALD (UV-ALD) methods. A pronounced efficiency drop was disclosed with the order of TE, ALD, and UV-ALD MoOX. Subsequently, the contact propertieis, crystallinity, chemical states, roughness, density, and refractive indices of MoOX films were systematically characterized by a series of microscopic and spectroscopic analyses. It is found that the TE film is composed of nanocrystals, while ALD methods yield amorphous feature with a smaller density and refractive indices. A mild UV illumination (3.5 mW/cm2) slightly reduces the film roughness, while a stronger (35 mW/cm2) one increases the film density, roughness, and growth rate significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Battaglia, S.M. de Nicolas, S. De Wolf et al., Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014)CrossRef C. Battaglia, S.M. de Nicolas, S. De Wolf et al., Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014)CrossRef
2.
Zurück zum Zitat J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014)CrossRef J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014)CrossRef
3.
Zurück zum Zitat J. Dreon, Q. Jeangros, J. Cattin et al., 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020)CrossRef J. Dreon, Q. Jeangros, J. Cattin et al., 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020)CrossRef
4.
Zurück zum Zitat E.M. Sanehira, B.J.T. de Villers, P. Schulz et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016)CrossRef E.M. Sanehira, B.J.T. de Villers, P. Schulz et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016)CrossRef
5.
Zurück zum Zitat X.G. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)CrossRef X.G. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)CrossRef
6.
Zurück zum Zitat Y.L. Zou, R.J. Holmes, Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells. Appl. Phys. Lett. 103, 138 (2013)CrossRef Y.L. Zou, R.J. Holmes, Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells. Appl. Phys. Lett. 103, 138 (2013)CrossRef
7.
Zurück zum Zitat C. Battaglia, X. Yin, M. Zheng et al., Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014)CrossRef C. Battaglia, X. Yin, M. Zheng et al., Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014)CrossRef
8.
Zurück zum Zitat J. Melskens, B.W. van de Loo, B. Macco, L.E. Black, S. Smit, W. Kessels, Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J. Photovolt. 8, 373–388 (2018)CrossRef J. Melskens, B.W. van de Loo, B. Macco, L.E. Black, S. Smit, W. Kessels, Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J. Photovolt. 8, 373–388 (2018)CrossRef
9.
Zurück zum Zitat S. Cao, J. Li, J. Zhang et al., Stable MoOX-based heterocontacts for p-type crystalline silicon solar cells achieving 20% efficiency. Adv. Funct. Mater. 30, 2004367 (2020)CrossRef S. Cao, J. Li, J. Zhang et al., Stable MoOX-based heterocontacts for p-type crystalline silicon solar cells achieving 20% efficiency. Adv. Funct. Mater. 30, 2004367 (2020)CrossRef
10.
Zurück zum Zitat S.Y. Cao, J.Y. Li, Y.Y. Lin et al., Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOX/metal contacts. Solar RRL. 3, 1900274 (2019)CrossRef S.Y. Cao, J.Y. Li, Y.Y. Lin et al., Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOX/metal contacts. Solar RRL. 3, 1900274 (2019)CrossRef
11.
Zurück zum Zitat S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO(3) and MoO(2) thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. J. Mater. Chem. 16, 3575–3582 (2006)CrossRef S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO(3) and MoO(2) thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. J. Mater. Chem. 16, 3575–3582 (2006)CrossRef
12.
Zurück zum Zitat V. Nirupama, M.C. Sekhar, T.K. Subramanyam, S. Uthanna, Structural and electrical characterization of magnetron sputtered MoO3 thin films. J. Phys. Conf. Ser. 208, 012101 (2010)CrossRef V. Nirupama, M.C. Sekhar, T.K. Subramanyam, S. Uthanna, Structural and electrical characterization of magnetron sputtered MoO3 thin films. J. Phys. Conf. Ser. 208, 012101 (2010)CrossRef
13.
Zurück zum Zitat S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films. Sens. Actuators B-Chem. 94, 189–196 (2003)CrossRef S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films. Sens. Actuators B-Chem. 94, 189–196 (2003)CrossRef
14.
Zurück zum Zitat M. Diskus, O. Nilsen, H. Fjellvag, Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 21, 705–710 (2011)CrossRef M. Diskus, O. Nilsen, H. Fjellvag, Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 21, 705–710 (2011)CrossRef
15.
Zurück zum Zitat K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selbach, A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C. 120, 8959–8968 (2016)CrossRef K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selbach, A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C. 120, 8959–8968 (2016)CrossRef
16.
Zurück zum Zitat K. Khojier, H. Savaloni, S. Zolghadr, On the dependence of structural and sensing properties of sputtered MoO3 thin films on argon gas flow. Appl. Surf. Sci. 320, 315–321 (2014)CrossRef K. Khojier, H. Savaloni, S. Zolghadr, On the dependence of structural and sensing properties of sputtered MoO3 thin films on argon gas flow. Appl. Surf. Sci. 320, 315–321 (2014)CrossRef
17.
Zurück zum Zitat E. McCarron III., J. Calabrese, The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J. Solid State Chem. 91, 121–125 (1991)CrossRef E. McCarron III., J. Calabrese, The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J. Solid State Chem. 91, 121–125 (1991)CrossRef
18.
Zurück zum Zitat D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C. 114, 4636–4645 (2010)CrossRef D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C. 114, 4636–4645 (2010)CrossRef
19.
Zurück zum Zitat V. Cremers, R.L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: current status overview of analysis and modelling. Appl. Phys. Rev. 6, 021302 (2019)CrossRef V. Cremers, R.L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: current status overview of analysis and modelling. Appl. Phys. Rev. 6, 021302 (2019)CrossRef
20.
Zurück zum Zitat B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008)CrossRef B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008)CrossRef
21.
Zurück zum Zitat P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, A. Vermeer, High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010)CrossRef P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, A. Vermeer, High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010)CrossRef
23.
Zurück zum Zitat X. Yang, K. Weber, Z. Hameiri, S. De Wolf, Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog. Photovolt. 25, 896–904 (2017)CrossRef X. Yang, K. Weber, Z. Hameiri, S. De Wolf, Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog. Photovolt. 25, 896–904 (2017)CrossRef
24.
Zurück zum Zitat H. Kim, Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 519, 6639–6644 (2011)CrossRef H. Kim, Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 519, 6639–6644 (2011)CrossRef
25.
Zurück zum Zitat C. Detavernier, J. Dendooven, D. Deduytsche, J. Musschoot, Thermal versus plasma-enhanced ALD: growth kinetics and conformality. ECS Trans. 16, 239–246 (2008)CrossRef C. Detavernier, J. Dendooven, D. Deduytsche, J. Musschoot, Thermal versus plasma-enhanced ALD: growth kinetics and conformality. ECS Trans. 16, 239–246 (2008)CrossRef
26.
Zurück zum Zitat K.-M. Kim, J.S. Jang, S.-G. Yoon, J.-Y. Yun, N.-K. Chung, Structural, optical and electrical properties of HfO2 thin films deposited at low-temperature using plasma-enhanced atomic layer deposition. Materials 13, 2008 (2020)CrossRef K.-M. Kim, J.S. Jang, S.-G. Yoon, J.-Y. Yun, N.-K. Chung, Structural, optical and electrical properties of HfO2 thin films deposited at low-temperature using plasma-enhanced atomic layer deposition. Materials 13, 2008 (2020)CrossRef
27.
Zurück zum Zitat X.B. Yang, E. Aydin, H. Xu et al., Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 8, 1800608 (2018)CrossRef X.B. Yang, E. Aydin, H. Xu et al., Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 8, 1800608 (2018)CrossRef
28.
Zurück zum Zitat P.O. Oviroh, R. Akbarzadeh, D.Q. Pan, R.A.M. Coetzee, T.C. Jen, New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20, 465–496 (2019)CrossRef P.O. Oviroh, R. Akbarzadeh, D.Q. Pan, R.A.M. Coetzee, T.C. Jen, New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20, 465–496 (2019)CrossRef
29.
Zurück zum Zitat J. Ziegler, M. Mews, K. Kaufmann et al., Plasma-enhanced atomic-layer-deposited MoO(x) emitters for silicon heterojunction solar cells. Appl. Phys. A-Mater. 120, 811–816 (2015)CrossRef J. Ziegler, M. Mews, K. Kaufmann et al., Plasma-enhanced atomic-layer-deposited MoO(x) emitters for silicon heterojunction solar cells. Appl. Phys. A-Mater. 120, 811–816 (2015)CrossRef
30.
Zurück zum Zitat P.R. Chalker, Photochemical atomic layer deposition and etching. Surf. Coat. Technol. 291, 258–263 (2016)CrossRef P.R. Chalker, Photochemical atomic layer deposition and etching. Surf. Coat. Technol. 291, 258–263 (2016)CrossRef
31.
Zurück zum Zitat K.J. Yuan, R.N. Dixon, X.M. Yang, Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics. Acc. Chem. Res. 44, 369–378 (2011)CrossRef K.J. Yuan, R.N. Dixon, X.M. Yang, Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics. Acc. Chem. Res. 44, 369–378 (2011)CrossRef
32.
Zurück zum Zitat T. Iimori, K. Hattori, K. Shudo, T. Iwaki, M. Ueta, F. Komori, Laser-induced mono-atomic-layer etching on Cl-adsorbed Si(111) surfaces. Appl. Surf. Sci. 130, 90–95 (1998)CrossRef T. Iimori, K. Hattori, K. Shudo, T. Iwaki, M. Ueta, F. Komori, Laser-induced mono-atomic-layer etching on Cl-adsorbed Si(111) surfaces. Appl. Surf. Sci. 130, 90–95 (1998)CrossRef
33.
Zurück zum Zitat B.H. Lee, S. Cho, J.K. Hwang, S.H. Kim, M.M. Sung, UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature. Thin Solid Films 518, 6432–6436 (2010)CrossRef B.H. Lee, S. Cho, J.K. Hwang, S.H. Kim, M.M. Sung, UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature. Thin Solid Films 518, 6432–6436 (2010)CrossRef
34.
Zurück zum Zitat S.K. Kim, S. Hoffmann-Eifert, R. Waser, High growth rate in atomic layer deposition of TiO2 thin films by UV irradiation. Electrochem. Solid State 14, H146 (2011)CrossRef S.K. Kim, S. Hoffmann-Eifert, R. Waser, High growth rate in atomic layer deposition of TiO2 thin films by UV irradiation. Electrochem. Solid State 14, H146 (2011)CrossRef
35.
Zurück zum Zitat K.H. Yoon, H. Kim, Y.-E.K. Lee, N.K. Shrestha, M.M. Sung, UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers. RSV Adv. 7, 5601–5609 (2017)CrossRef K.H. Yoon, H. Kim, Y.-E.K. Lee, N.K. Shrestha, M.M. Sung, UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers. RSV Adv. 7, 5601–5609 (2017)CrossRef
36.
Zurück zum Zitat W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publication, New Jersey, 1993), pp. 111–196 W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publication, New Jersey, 1993), pp. 111–196
37.
Zurück zum Zitat T. Zhang, C.Y. Lee, Y.M. Wan, S. Lim, B. Hoex, Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. J. Appl. Phys. 124, 073106 (2018)CrossRef T. Zhang, C.Y. Lee, Y.M. Wan, S. Lim, B. Hoex, Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. J. Appl. Phys. 124, 073106 (2018)CrossRef
38.
Zurück zum Zitat H.C. Card, Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electr. Devices. 23, 538–544 (1976)CrossRef H.C. Card, Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electr. Devices. 23, 538–544 (1976)CrossRef
39.
Zurück zum Zitat R. Cox, H. Strack, Ohmic contacts for GaAs devices. Solid-State Electron. 10, 1213–1218 (1967)CrossRef R. Cox, H. Strack, Ohmic contacts for GaAs devices. Solid-State Electron. 10, 1213–1218 (1967)CrossRef
40.
Zurück zum Zitat B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29, 2024–2032 (2017)CrossRef B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29, 2024–2032 (2017)CrossRef
41.
Zurück zum Zitat J.R. Creighton, Photodecomposition of Mo(Co)6 adsorbed on Si(100). J. Appl. Phys. 59, 410–414 (1986)CrossRef J.R. Creighton, Photodecomposition of Mo(Co)6 adsorbed on Si(100). J. Appl. Phys. 59, 410–414 (1986)CrossRef
42.
Zurück zum Zitat D. Xiang, C. Han, J. Zhang, W. Chen, Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep.-UK 4, 4891 (2014)CrossRef D. Xiang, C. Han, J. Zhang, W. Chen, Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep.-UK 4, 4891 (2014)CrossRef
43.
Zurück zum Zitat D. Sacchetto, Q. Jeangros, G. Christmann et al., ITO/MoOx/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration. IEEE J. Photovolt. 7, 1584–1590 (2017)CrossRef D. Sacchetto, Q. Jeangros, G. Christmann et al., ITO/MoOx/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration. IEEE J. Photovolt. 7, 1584–1590 (2017)CrossRef
44.
Zurück zum Zitat F. Menchini, L. Serenelli, L. Martini et al., Transparent hole-collecting and buffer layers for heterojunction solar cells based on n-type-doped silicon. Appl. Phys. A 124, 489 (2018)CrossRef F. Menchini, L. Serenelli, L. Martini et al., Transparent hole-collecting and buffer layers for heterojunction solar cells based on n-type-doped silicon. Appl. Phys. A 124, 489 (2018)CrossRef
45.
Zurück zum Zitat T. Dai, Y. Ren, L. Qian, X. Liu, Characterization of molybdenum oxide thin films grown by atomic layer deposition. J. Electron Mater. 47, 6709–6715 (2018)CrossRef T. Dai, Y. Ren, L. Qian, X. Liu, Characterization of molybdenum oxide thin films grown by atomic layer deposition. J. Electron Mater. 47, 6709–6715 (2018)CrossRef
46.
Zurück zum Zitat Y.T. Chua, P.C. Stair, I.E. Wachs, A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B 105, 8600–8606 (2001)CrossRef Y.T. Chua, P.C. Stair, I.E. Wachs, A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B 105, 8600–8606 (2001)CrossRef
47.
Zurück zum Zitat R. Murugan, A. Ghule, C. Bhongale, H. Chang, Thermo-Raman investigations on structural transformations in hydrated MoO3. J. Mater. Chem. 10, 2157–2162 (2000)CrossRef R. Murugan, A. Ghule, C. Bhongale, H. Chang, Thermo-Raman investigations on structural transformations in hydrated MoO3. J. Mater. Chem. 10, 2157–2162 (2000)CrossRef
48.
Zurück zum Zitat J. Li, T. Pan, J. Wang et al., Bilayer MoOX/CrOX passivating contact targeting highly stable silicon heterojunction solar cells. ACS Appl. Mater. Interface. 12, 36778–36786 (2020)CrossRef J. Li, T. Pan, J. Wang et al., Bilayer MoOX/CrOX passivating contact targeting highly stable silicon heterojunction solar cells. ACS Appl. Mater. Interface. 12, 36778–36786 (2020)CrossRef
49.
Zurück zum Zitat A. Piegari, F. Flory, Optical Thin Films and Coatings 2nd Edition: From Materials to Applications (Woodhead Publishing, Sawston, 2018). A. Piegari, F. Flory, Optical Thin Films and Coatings 2nd Edition: From Materials to Applications (Woodhead Publishing, Sawston, 2018).
50.
Zurück zum Zitat R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. today. 17, 236–246 (2014)CrossRef R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. today. 17, 236–246 (2014)CrossRef
51.
Zurück zum Zitat B. Yang, Y. Chen, Y. Cui, D.L. Liu, B.W. Xu, J.H. Hou, Over 100-nm-thick MoOx films with superior hole collection and transport properties for organic solar cells. Adv. Energy Mater. 8, 1800698 (2018)CrossRef B. Yang, Y. Chen, Y. Cui, D.L. Liu, B.W. Xu, J.H. Hou, Over 100-nm-thick MoOx films with superior hole collection and transport properties for organic solar cells. Adv. Energy Mater. 8, 1800698 (2018)CrossRef
52.
Zurück zum Zitat Z. Zhang, Y. Xiao, H.X. Wei et al., Impact of oxygen vacancy on energy-level alignment at MoOx/organic interfaces. Appl. Phys. Express. 6, 095701 (2013)CrossRef Z. Zhang, Y. Xiao, H.X. Wei et al., Impact of oxygen vacancy on energy-level alignment at MoOx/organic interfaces. Appl. Phys. Express. 6, 095701 (2013)CrossRef
53.
Zurück zum Zitat O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques. AIMS Mater. Sci. 6, 174–199 (2019)CrossRef O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques. AIMS Mater. Sci. 6, 174–199 (2019)CrossRef
54.
Zurück zum Zitat B. Macco, M. Vos, N. Thissen, A. Bol, W. Kessels, Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells. Phys Status Solidi (RRL). 9, 393–396 (2015)CrossRef B. Macco, M. Vos, N. Thissen, A. Bol, W. Kessels, Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells. Phys Status Solidi (RRL). 9, 393–396 (2015)CrossRef
55.
Zurück zum Zitat T. Sun, R. Wang, R. Liu et al., Investigation of MoOx/n-Si strong inversion layer interfaces via dopant-free heterocontact. Phys. Status Solidi (RRL). 11, 1700107 (2017)CrossRef T. Sun, R. Wang, R. Liu et al., Investigation of MoOx/n-Si strong inversion layer interfaces via dopant-free heterocontact. Phys. Status Solidi (RRL). 11, 1700107 (2017)CrossRef
56.
Zurück zum Zitat R. Wang, Y. Wang, C. Wu et al., Direct observation of conductive polymer induced inversion layer in n-Si and correlation to solar cell performance. Adv. Funct. Mater. 30, 1903440 (2020)CrossRef R. Wang, Y. Wang, C. Wu et al., Direct observation of conductive polymer induced inversion layer in n-Si and correlation to solar cell performance. Adv. Funct. Mater. 30, 1903440 (2020)CrossRef
57.
Zurück zum Zitat M. Yasaka, X-ray thin-film measurement techniques. Rigaku J. 26, 1–9 (2010) M. Yasaka, X-ray thin-film measurement techniques. Rigaku J. 26, 1–9 (2010)
58.
Zurück zum Zitat T.C. Huang, R. Gilles, G. Will, Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer. Thin Solid Films 230, 99–101 (1993)CrossRef T.C. Huang, R. Gilles, G. Will, Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer. Thin Solid Films 230, 99–101 (1993)CrossRef
59.
Zurück zum Zitat D. Aggarwal, Frequency analysis of X-ray reflectivity data by FFT (Enrollment No: A4450014016), Master dissertation, Amity University (2016) D. Aggarwal, Frequency analysis of X-ray reflectivity data by FFT (Enrollment No: A4450014016), Master dissertation, Amity University (2016)
60.
Zurück zum Zitat M.J. Jeong, Y.J. Jo, S.H. Lee et al., Heterojunction solar cell with carrier selective contact using MoOx deposited by atomic layer deposition. Korean J. Mater. Res. 29, 322–327 (2019)CrossRef M.J. Jeong, Y.J. Jo, S.H. Lee et al., Heterojunction solar cell with carrier selective contact using MoOx deposited by atomic layer deposition. Korean J. Mater. Res. 29, 322–327 (2019)CrossRef
61.
Zurück zum Zitat Z. Hussain, Thermo optical properties and related electronic polarizabilities of MoO3 thin films using ellipsometry. AJEAS 12, 90–110 (2019) Z. Hussain, Thermo optical properties and related electronic polarizabilities of MoO3 thin films using ellipsometry. AJEAS 12, 90–110 (2019)
62.
Zurück zum Zitat M. Khardani, M. Bouaïcha, B. Bessaïs, Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. Phys. Status Solidi C 4, 1986–1990 (2007)CrossRef M. Khardani, M. Bouaïcha, B. Bessaïs, Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. Phys. Status Solidi C 4, 1986–1990 (2007)CrossRef
Metadaten
Titel
Structural and optical studies of molybdenum oxides thin films obtained by thermal evaporation and atomic layer deposition methods for photovoltaic application
verfasst von
Tianyu Pan
Jingye Li
Yinyue Lin
Zhongying Xue
Zengfeng Di
Min Yin
Jilei Wang
Linfeng Lu
Liyou Yang
Dongdong Li
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-05094-9

Weitere Artikel der Ausgabe 3/2021

Journal of Materials Science: Materials in Electronics 3/2021 Zur Ausgabe